University of Innsbruck, Unit of Environmental Engineering, Technikerstrasse 13, Innsbruck, A-6020, Austria E-mail:
University of Innsbruck, Interactive Graphics and Simulation Group, Technikerstrasse 13, Innsbruck, A-6020, Austria.
Water Sci Technol. 2024 Jul;90(1):156-167. doi: 10.2166/wst.2024.197. Epub 2024 Jun 11.
Model parameter estimation is a well-known inverse problem, as long as single-value point data are available as observations of system performance measurement. However, classical statistical methods, such as the minimization of an objective function or maximum likelihood, are no longer straightforward, when measurements are imprecise in nature. Typical examples of the latter include censored data and binary information. Here, we explore Approximate Bayesian Computation as a simple method to perform model parameter estimation with such imprecise information. We demonstrate the method for the example of a plain rainfall-runoff model and illustrate the advantages and shortcomings. Last, we outline the value of Shapley values to determine which type of observation contributes to the parameter estimation and which are of minor importance.
模型参数估计是一个众所周知的反问题,只要可以将系统性能测量的单值点数据作为观测值。然而,当测量本身存在不精确性时,经典的统计方法(如目标函数的最小化或最大似然)就不再适用。后者的典型例子包括删失数据和二进制信息。在这里,我们探索近似贝叶斯计算作为一种简单的方法,用于处理这种不精确信息的模型参数估计。我们以一个简单的降雨径流模型为例来说明该方法,并说明其优缺点。最后,我们概述了 Shapley 值的价值,以确定哪种类型的观测对参数估计有贡献,以及哪种观测的贡献较小。