Suppr超能文献

用于 SARS-CoV-2 基于污水流行病学的数据建模方法。

Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology.

机构信息

Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria.

Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria.

出版信息

Environ Res. 2022 Nov;214(Pt 1):113809. doi: 10.1016/j.envres.2022.113809. Epub 2022 Jul 5.

Abstract

Wastewater based epidemiology is recognized as one of the monitoring pillars, providing essential information for pandemic management. Central in the methodology are data modelling concepts for both communicating the monitoring results but also for analysis of the signal. It is due to the fast development of the field that a range of modelling concepts are used but without a coherent framework. This paper provides for such a framework, focusing on robust and simple concepts readily applicable, rather than applying latest findings from e.g., machine learning. It is demonstrated that data preprocessing, most important normalization by means of biomarkers and equal temporal spacing of the scattered data, is crucial. In terms of the latter, downsampling to a weekly spaced series is sufficient. Also, data smoothing turned out to be essential, not only for communication of the signal dynamics but likewise for regressions, nowcasting and forecasting. Correlation of the signal with epidemic indicators requires multivariate regression as the signal alone cannot explain the dynamics but - for this case study - multiple linear regression proofed to be a suitable tool when the focus is on understanding and interpretation. It was also demonstrated that short term prediction (7 days) is accurate with simple models (exponential smoothing or autoregressive models) but forecast accuracy deteriorates fast for longer periods.

摘要

基于污水的流行病学被认为是监测支柱之一,为大流行管理提供了重要信息。该方法的核心是数据建模概念,既用于传达监测结果,也用于分析信号。由于该领域的快速发展,使用了一系列建模概念,但没有一个连贯的框架。本文提供了这样一个框架,重点是稳健且简单的概念,易于应用,而不是应用最新的发现,例如机器学习。结果表明,数据预处理,最重要的是通过生物标志物进行标准化和分散数据的时间均等间隔,是至关重要的。就后者而言,每周间隔系列的下采样就足够了。同样,数据平滑对于信号动态的传播以及回归、实时预测和预测同样至关重要。信号与流行指标的相关性需要进行多元回归,因为信号本身无法解释动态,但就本案例研究而言,当重点是理解和解释时,多元线性回归被证明是一种合适的工具。还表明,短期预测(7 天)使用简单模型(指数平滑或自回归模型)非常准确,但对于较长时间段,预测准确性会迅速恶化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6228/9252867/14f44166f3a0/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验