Suppr超能文献

通过动态相位循环,确保速度选择动脉自旋标记对场非均匀性具有快速和空间响应。

Ensuring both velocity and spatial responses robust to field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling.

机构信息

Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

出版信息

Magn Reson Med. 2021 May;85(5):2723-2734. doi: 10.1002/mrm.28622. Epub 2020 Dec 8.

Abstract

PURPOSE

To evaluate both velocity and spatial responses of velocity-selective arterial spin labeling (VS-ASL), using velocity-insensitive and velocity-compensated waveforms for control modules, as well as a novel dynamic phase-cycling approach, at different B / field inhomogeneities.

METHODS

In the presence of imperfect refocusing, the mechanism of phase-cycling the refocusing pulses through four dynamics was first theoretically analyzed with the conventional velocity-selective saturation (VSS) pulse train. Numerical simulations were then deployed to compare the performance of the Fourier-transform based velocity-selective inversion (FT-VSI) with these three different schemes in terms of both velocity and spatial responses under various B / conditions. Phantom and human brain scans were performed to evaluate the three methods at scales of 0.8, 1.0, and 1.2.

RESULTS

The simulations of FT-VSI showed that, under nonuniform B / conditions, the scheme with velocity-insensitive control was susceptible to DC bias of the static spins as systematic error, while the scheme with velocity-compensated control had deteriorated velocity-selective labeling profiles and, thus, reduced labeling efficiency. Through numerical simulation, phantom scans, and brain perfusion measurements, the dynamic phase-cycling method demonstrated considerable improvements over these issues.

CONCLUSION

The proposed dynamic phase-cycling approach was demonstrated for the velocity-selective label and control modules with both velocity and spatial responses robust to a wide range of B and field inhomogeneities.

摘要

目的

评估使用速度不敏感和速度补偿控制模块以及一种新颖的动态相循环方法,在不同 B / 场不均匀性下,速度选择动脉自旋标记(VS-ASL)的速度和空间响应。

方法

在不完全重聚焦的情况下,首先通过理论分析具有常规速度选择饱和(VSS)脉冲串的四动力学相循环脉冲,分析了相位循环机制。然后进行数值模拟,比较基于傅里叶变换的速度选择反转(FT-VSI)与这三种不同方案在各种 B / 条件下的速度和空间响应性能。进行了幻影和人脑扫描,以在 0.8、1.0 和 1.2 尺度上评估这三种方法。

结果

FT-VSI 的模拟表明,在非均匀 B / 条件下,速度不敏感控制方案容易受到静态自旋直流偏置的影响,导致系统误差,而速度补偿控制方案则具有较差的速度选择标记轮廓,因此降低了标记效率。通过数值模拟、幻影扫描和脑灌注测量,动态相循环方法在这些问题上显示出了相当大的改进。

结论

提出了一种用于速度选择标签和控制模块的动态相循环方法,该方法在广泛的 B 和 场不均匀性下具有稳健的速度和空间响应。

相似文献

2
Reduced B/B sensitivity in velocity-selective inversion arterial spin labeling using adiabatic refocusing pulses.
Magn Reson Med. 2024 Nov;92(5):2091-2100. doi: 10.1002/mrm.30210. Epub 2024 Jul 16.
3
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
4
Comparison of velocity-selective arterial spin labeling schemes.
Magn Reson Med. 2021 Apr;85(4):2027-2039. doi: 10.1002/mrm.28572. Epub 2020 Oct 31.
5
Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition.
Magn Reson Med. 2020 Nov;84(5):2512-2522. doi: 10.1002/mrm.28310. Epub 2020 May 13.
7
Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains.
Magn Reson Med. 2019 Jun;81(6):3544-3554. doi: 10.1002/mrm.27668. Epub 2019 Feb 8.
9
Robust dual-module velocity-selective arterial spin labeling (dm-VSASL) with velocity-selective saturation and inversion.
Magn Reson Med. 2023 Mar;89(3):1026-1040. doi: 10.1002/mrm.29513. Epub 2022 Nov 6.

引用本文的文献

2
MVP-VSASL: measuring MicroVascular Pulsatility using velocity-selective arterial spin labeling.
Magn Reson Med. 2025 Apr;93(4):1516-1534. doi: 10.1002/mrm.30370. Epub 2024 Dec 29.
9
Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow.
Neuroimage. 2023 May 1;271:120039. doi: 10.1016/j.neuroimage.2023.120039. Epub 2023 Mar 16.
10
Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T.
Magn Reson Med. 2023 Jun;89(6):2305-2317. doi: 10.1002/mrm.29603. Epub 2023 Feb 6.

本文引用的文献

2
Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition.
Magn Reson Med. 2020 Nov;84(5):2512-2522. doi: 10.1002/mrm.28310. Epub 2020 May 13.
3
Improved velocity-selective labeling pulses for myocardial ASL.
Magn Reson Med. 2020 Oct;84(4):1909-1918. doi: 10.1002/mrm.28253. Epub 2020 Mar 15.
4
Non-contrast-enhanced abdominal MRA at 3 T using velocity-selective pulse trains.
Magn Reson Med. 2020 Sep;84(3):1173-1183. doi: 10.1002/mrm.28187. Epub 2020 Feb 4.
6
Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains.
Magn Reson Med. 2019 Jun;81(6):3544-3554. doi: 10.1002/mrm.27668. Epub 2019 Feb 8.
7
Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL.
Magn Reson Med. 2019 Feb;81(2):1004-1015. doi: 10.1002/mrm.27461. Epub 2018 Sep 6.
8
Characterization and suppression of stripe artifact in velocity-selective magnetization-prepared unenhanced MR angiography.
Magn Reson Med. 2018 Nov;80(5):1997-2005. doi: 10.1002/mrm.27160. Epub 2018 Mar 13.
9
Quantitative measurement of cerebral blood volume using velocity-selective pulse trains.
Magn Reson Med. 2017 Jan;77(1):92-101. doi: 10.1002/mrm.26515. Epub 2016 Oct 31.
10
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验