Suppr超能文献

基于证据的临床摄入工具在真实数字健康互动中发现或确定症状流行率的潜力:回顾性队列研究。

The Potential of Evidence-Based Clinical Intake Tools to Discover or Ground Prevalence of Symptoms Using Real-Life Digital Health Encounters: Retrospective Cohort Study.

机构信息

Kahun Medical Ltd, Givatayim, Israel.

Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

出版信息

J Med Internet Res. 2024 Jul 16;26:e49570. doi: 10.2196/49570.

Abstract

BACKGROUND

Evidence-based clinical intake tools (EBCITs) are structured assessment tools used to gather information about patients and help health care providers make informed decisions. The growing demand for personalized medicine, along with the big data revolution, has rendered EBCITs a promising solution. EBCITs have the potential to provide comprehensive and individualized assessments of symptoms, enabling accurate diagnosis, while contributing to the grounding of medical care.

OBJECTIVE

This work aims to examine whether EBCITs cover data concerning disorders and symptoms to a similar extent as physicians, and thus can reliably address medical conditions in clinical settings. We also explore the potential of EBCITs to discover and ground the real prevalence of symptoms in different disorders thereby expanding medical knowledge and further supporting medical diagnoses made by physicians.

METHODS

Between August 1, 2022, and January 15, 2023, patients who used the services of a digital health care (DH) provider in the United States were first assessed by the Kahun EBCIT. Kahun platform gathered and analyzed the information from the sessions. This study estimated the prevalence of patients' symptoms in medical disorders using 2 data sets. The first data set analyzed symptom prevalence, as determined by Kahun's knowledge engine. The second data set analyzed symptom prevalence, relying solely on data from the DH patients gathered by Kahun. The variance difference between these 2 prevalence data sets helped us assess Kahun's ability to incorporate new data while integrating existing knowledge. To analyze the comprehensiveness of Kahun's knowledge engine, we compared how well it covers weighted data for the symptoms and disorders found in the 2019 National Ambulatory Medical Care Survey (NMCAS). To assess Kahun's diagnosis accuracy, physicians independently diagnosed 250 of Kahun-DH's sessions. Their diagnoses were compared with Kahun's diagnoses.

RESULTS

In this study, 2550 patients used Kahun to complete a full assessment. Kahun proposed 108,523 suggestions related to symptoms during the intake process. At the end of the intake process, 6496 conditions were presented to the caregiver. Kahun covered 94% (526,157,569/562,150,572) of the weighted symptoms and 91% (1,582,637,476/173,4783,244) of the weighted disorders in the 2019 NMCAS. In 90% (224/250) of the sessions, both physicians and Kahun suggested at least one identical disorder, with a 72% (367/507) total accuracy rate. Kahun's engine yielded 519 prevalences while the Kahun-DH cohort yielded 599; 156 prevalences were unique to the latter and 443 prevalences were shared by both data sets.

CONCLUSIONS

ECBITs, such as Kahun, encompass extensive amounts of knowledge and could serve as a reliable database for inferring medical insights and diagnoses. Using this credible database, the potential prevalence of symptoms in different disorders was discovered or grounded. This highlights the ability of ECBITs to refine the understanding of relationships between disorders and symptoms, which further supports physicians in medical diagnosis.

摘要

背景

基于证据的临床摄入工具(EBCIT)是一种结构化评估工具,用于收集有关患者的信息,并帮助医疗保健提供者做出明智的决策。随着个性化医疗的需求不断增长,以及大数据革命的到来,EBCIT 成为一种有前途的解决方案。EBCIT 有可能对症状进行全面和个性化的评估,从而实现准确的诊断,并为医疗保健提供基础。

目的

本研究旨在检验 EBCIT 在多大程度上可以像医生一样涵盖有关疾病和症状的数据,从而可以在临床环境中可靠地处理医疗状况。我们还探讨了 EBCIT 发现和确定不同疾病中症状真实流行情况的潜力,从而扩展医学知识,并进一步支持医生的诊断。

方法

2022 年 8 月 1 日至 2023 年 1 月 15 日期间,在美国使用数字医疗保健(DH)服务的患者首先由 Kahun EBCIT 进行评估。Kahun 平台收集并分析了来自会话的信息。本研究使用两个数据集估计患者在医疗疾病中的症状患病率。第一个数据集分析了 Kahun 的知识引擎确定的症状患病率。第二个数据集仅依赖于 Kahun 通过其收集的 DH 患者的数据来分析症状患病率。这两个患病率数据集之间的方差差异有助于我们评估 Kahun 在整合新数据的同时整合现有知识的能力。为了分析 Kahun 知识引擎的全面性,我们比较了它对 2019 年全国门诊医疗保健调查(NMCAS)中发现的症状和疾病的加权数据的覆盖程度。为了评估 Kahun 的诊断准确性,医生独立诊断了 Kahun-DH 的 250 个会话。将他们的诊断与 Kahun 的诊断进行比较。

结果

在这项研究中,2550 名患者使用 Kahun 完成了全面评估。Kahun 在摄入过程中提出了 108523 个与症状相关的建议。摄入过程结束时,向护理人员提出了 6496 种疾病。Kahun 涵盖了 2019 年 NMCAS 中 94%(526157569/562150572)的加权症状和 91%(1582637476/1734783244)的加权疾病。在 90%(224/250)的会话中,医生和 Kahun 都至少提出了一种相同的疾病,总准确率为 72%(367/507)。Kahun 的引擎产生了 519 种流行率,而 Kahun-DH 队列产生了 599 种;后者有 156 种流行率是独特的,有 443 种流行率是两个数据集共有的。

结论

像 Kahun 这样的 EBCIT 包含了大量的知识,可以作为推断医学见解和诊断的可靠数据库。使用这个可信的数据库,发现或确定了不同疾病中症状的潜在流行情况。这突出了 EBCIT 能够改进对疾病和症状之间关系的理解,从而进一步支持医生进行医学诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c4/11289572/86548a99356d/jmir_v26i1e49570_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验