Suppr超能文献

基于 MaxEnt 和化学计量学方法预测气候变化下三七的适宜生境。

Prediction of Chinese suitable habitats of Panax notoginseng under climate change based on MaxEnt and chemometric methods.

机构信息

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.

Meteorological Administration Key Open Laboratory of Transforming Climate Resource to Economy, Chongqing, 401147, China.

出版信息

Sci Rep. 2024 Jul 16;14(1):16434. doi: 10.1038/s41598-024-67178-4.

Abstract

Notoginseng saponin R1; ginsenosides Rg1, Re, Rb1, and Rd; the sum of the five saponins; and underground-part fresh weight (UPFW) of single plants were used as quality evaluation indices for Panax notoginseng (Burk.) F. H. Chen (P. notoginseng). Comprehensive evaluation of P. notoginseng samples from 30 production areas was performed using that MaxEnt model. Spatial pattern changes in suitable P. notoginseng habitats were predicted for current and future periods (2050s, 2070s, and 2090s) using SSP126 and SSP585 models. The results revealed that temperature, precipitation, and solar radiation were important environmental variables. Suitable habitats were located mainly in Yunnan, Guizhou, and Sichuan Provinces. The distribution core of P. notoginseng is predicted to shift southeast in the future. The saponin content decreased from the southeast to the northwest of Yunnan Province, which was contrary to the UPFW trend. This study provides the necessary information for the protection and sustainable utilization of P. notoginseng resources, and a theoretical reference for its application in the quality evaluation of Chinese medicinal products.

摘要

三七总皂苷 R1;人参皂苷 Rg1、Re、Rb1 和 Rd;五种皂苷的总和;以及单株植物的地下部分鲜重(UPFW)被用作三七(Panax notoginseng (Burk.) F. H. Chen)(P. notoginseng)的质量评价指标。使用 MaxEnt 模型对来自 30 个生产区的 P. notoginseng 样本进行了综合评价。使用 SSP126 和 SSP585 模型预测了当前和未来时期(2050 年代、2070 年代和 2090 年代)适宜 P. notoginseng 生境的空间格局变化。结果表明,温度、降水和太阳辐射是重要的环境变量。适宜生境主要分布在云南省、贵州省和四川省。未来 P. notoginseng 的分布核心预计将向东南方向转移。云南三七总皂苷含量从东南向西北逐渐降低,与 UPFW 趋势相反。本研究为 P. notoginseng 资源的保护和可持续利用提供了必要的信息,为其在中药质量评价中的应用提供了理论参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3985/11252130/98457d4d070e/41598_2024_67178_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验