Suppr超能文献

台北大学生社会人口特征、电子健康素养与促进健康生活方式之间的关联:电子健康素养量表中文版的横断面验证研究。

Associations Between Sociodemographic Characteristics, eHealth Literacy, and Health-Promoting Lifestyle Among University Students in Taipei: Cross-Sectional Validation Study of the Chinese Version of the eHealth Literacy Scale.

机构信息

Department of Tourism and Leisure Management, China University of Technology, Taipei, Taiwan.

出版信息

J Med Internet Res. 2024 Jul 18;26:e52314. doi: 10.2196/52314.

Abstract

BACKGROUND

The popularization of the internet and rapid development of mobile devices have led to an increased inclination and opportunities to obtain health-related information online. The eHealth Literacy Scale (eHEALS), widely used for measuring eHealth literacy, assesses an individual's ability to search, understand, appraise, and use eHealth information. However, the Chinese version of the eHEALS multiple-factor model remains to be validated, and the correlation between eHEALS and the health-promoting lifestyle profile (HPLP) among university students is rarely explored in Taiwan.

OBJECTIVE

This study aimed to examine the fit, validity, and reliability of the Chinese eHEALS multiple-factor model and to clarify the predictive effects of eHEALS on the HPLP among university students.

METHODS

University students in Taipei, the capital of Taiwan, were recruited, and 406 valid questionnaires including sociodemographic characteristics, eHEALS, and HPLP responses were collected. Confirmatory factor analysis was performed to validate the Chinese eHEALS. Independent sample t test, 1-way ANOVA, and multiple linear regression analyses were conducted to examine the relationship between sociodemographic variables and the HPLP. Pearson product-moment correlation and binary logistic regression analyses were performed to ascertain the predictive effects of eHEALS on the HPLP.

RESULTS

The Chinese eHEALS exhibited an optimal fit when delineated into the search, usage, and evaluation 3-factor model (comparative fit index=0.991, Tucker-Lewis index=0.984, root mean square error of approximation=0.062), and its validity and reliability were confirmed. The mean eHEALS score of university students was 3.17/4.00 (SD 0.48) points, and the score for the evaluation subscale was the lowest (mean 3.08, SD 0.56 points). Furthermore, there were significant sex, institution orientation, daily reading time, daily screen time, primary information channel, and perceived health status differences in the HPLP: male participants (t=2.346, P=.02), participants attending general university (t=2.564, P=.01), those reading ≥1 hour daily (F=17.618, P<.001), those spending <3 hours on mobile devices or computers daily (F=7.148, P<.001), those acquiring information from others (t=3.892, P<.001), and those with a good perceived health status (F=24.366, P<.001) had a significantly higher score. After adjusting for sociodemographic variables, the eHEALS score remained an independent predictor of the HPLP. Compared to students with relatively high eHEALS scores, those with relatively low eHEALS scores had a 3.37 times risk of a negative HPLP (adjusted odds ratio [OR]=3.37, 95% CI 1.49-7.61), which could explain 14.7%-24.4% of the variance (Cox-Snell R=0.147, Nagelkerke R=0.244, P=.004).

CONCLUSIONS

There is room for improvement in eHealth literacy among university students in Taipei. eHEALS may be used to screen students who require HPLP improvement, thereby providing appropriate eHealth literacy training programs, particularly those targeting evaluation literacy. Additionally, the 3-factor model of the Chinese eHEALS used in this study results in more definite scale content, thus increasing the practicality and applicability of this scale in health-promoting studies.

摘要

背景

互联网的普及和移动设备的快速发展导致人们越来越倾向于在线获取健康相关信息。电子健康素养量表(eHEALS)广泛用于衡量电子健康素养,评估个体搜索、理解、评估和使用电子健康信息的能力。然而,中文版的 eHEALS 多因素模型仍有待验证,并且在台湾,eHEALS 与大学生健康促进生活型态量表(HPLP)之间的相关性很少被探讨。

目的

本研究旨在检验中文版 eHEALS 多因素模型的拟合度、有效性和可靠性,并阐明 eHEALS 对大学生 HPLP 的预测作用。

方法

在台北市招募大学生,共收集了 406 份有效问卷,包括社会人口统计学特征、eHEALS 和 HPLP 应答。采用验证性因子分析验证中文版 eHEALS。采用独立样本 t 检验、单因素方差分析和多元线性回归分析检验社会人口统计学变量与 HPLP 的关系。采用皮尔逊积矩相关和二项逻辑回归分析确定 eHEALS 对 HPLP 的预测作用。

结果

当划分为搜索、使用和评估 3 因素模型时,中文版 eHEALS 表现出最佳拟合(比较拟合指数=0.991,Tucker-Lewis 指数=0.984,均方根误差近似值=0.062),且其有效性和可靠性得到了确认。大学生的平均 eHEALS 得分为 3.17/4.00(SD 0.48)分,评估分量表的得分最低(平均 3.08,SD 0.56 分)。此外,HPLP 在性别、机构取向、每日阅读时间、每日屏幕时间、主要信息渠道和感知健康状况方面存在显著差异:男性参与者(t=2.346,P=.02)、就读于普通大学的参与者(t=2.564,P=.01)、每天阅读≥1 小时的参与者(F=17.618,P<.001)、每天使用移动设备或电脑时间<3 小时的参与者(F=7.148,P<.001)、从他人处获取信息的参与者(t=3.892,P<.001)和自我感知健康状况良好的参与者(F=24.366,P<.001)的得分显著较高。在调整社会人口统计学变量后,eHEALS 得分仍然是 HPLP 的独立预测因子。与 eHEALS 得分较高的学生相比,eHEALS 得分较低的学生 HPLP 呈阴性的风险高 3.37 倍(调整后的优势比[OR]=3.37,95%置信区间 1.49-7.61),可解释 14.7%-24.4%的方差(Cox-Snell R=0.147,Nagelkerke R=0.244,P=.004)。

结论

台北市大学生的电子健康素养有待提高。eHEALS 可用于筛选需要提高 HPLP 的学生,从而提供适当的电子健康素养培训计划,特别是针对评估素养的计划。此外,本研究中使用的中文版 eHEALS 的 3 因素模型导致了更明确的量表内容,从而提高了该量表在健康促进研究中的实用性和适用性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验