Suppr超能文献

仙台市日本女高中生的电子健康素养与青少年健康:横断面研究

eHealth Literacy and Adolescent Health in Japanese Female High School Students in Sendai: Cross-Sectional Study.

作者信息

Takeda Takashi, Yoshimi Kana, Kai Sayaka, Inoue Fumi

机构信息

Division of Women's Health, Research Institute of Traditional Asian Medicine, Kindai University, Osaka-Sayama, Japan.

出版信息

JMIR Pediatr Parent. 2025 Jun 30;8:e73237. doi: 10.2196/73237.

Abstract

BACKGROUND

In the digital age, adolescents increasingly rely on online sources for health-related information. eHealth literacy-defined as the ability to find, evaluate, and apply online health information-plays a crucial role in health outcomes. However, limited research exists on eHealth literacy among Japanese high school students, particularly on its association with menstrual health and psychological well-being.

OBJECTIVE

This study aimed to assess the eHealth literacy of Japanese female high school students and examine its association with premenstrual symptoms, psychological distress, loneliness, and self-esteem.

METHODS

A cross-sectional, web-based survey was conducted in December 2024 among 1607 female students from 2 public high schools in Sendai, Japan. A total of 909 students with regular menstrual cycles completed all survey items. The survey included the eHealth Literacy Scale (eHEALS), Premenstrual Symptoms Questionnaire, Kessler Psychological Distress Scale (K6), Revised UCLA Loneliness Scale, Rosenberg Self-Esteem Scale, and a numerical rating scale for menstrual pain. Statistical analyses, including Student t tests, chi-square tests, correlation analyses, and logistic regression analyses, were used to examine the relationships between eHealth literacy and various health outcomes.

RESULTS

The mean eHEALS score was 22.8 (SD 7.3), with 32.1% (292/909) of participants classified as having high eHealth literacy (eHEALS≥26). Students with higher eHealth literacy reported significantly lower levels of loneliness and higher self-esteem. The severity of premenstrual symptoms, particularly feeling overwhelmed, was significantly lower in the high eHealth literacy group. Additionally, interpersonal difficulties related to premenstrual symptoms were less prevalent among students with high eHealth literacy. Pearson correlation analysis indicated negative associations between the eHEALS score and psychological distress (K6) and loneliness, whereas a positive association was observed with self-esteem. Logistic regression analysis showed that high self-esteem was significantly associated with high eHealth literacy.

CONCLUSIONS

This study highlights the importance of eHealth literacy in adolescent health care. Higher eHealth literacy is linked to lower levels of loneliness, higher self-esteem, and reduced premenstrual symptom severity, particularly feeling overwhelmed. Although the cross-sectional design limits causal conclusions, these findings suggest that higher eHealth literacy is associated with better mental and reproductive health in adolescents. Future research should adopt longitudinal designs, include more diverse populations-such as male adolescents-and explore additional contributing factors to better elucidate these associations.

摘要

背景

在数字时代,青少年越来越依赖在线资源获取与健康相关的信息。电子健康素养被定义为查找、评估和应用在线健康信息的能力,在健康结果中起着至关重要的作用。然而,关于日本高中生电子健康素养的研究有限,特别是其与月经健康和心理健康的关联。

目的

本研究旨在评估日本女高中生的电子健康素养,并探讨其与经前症状、心理困扰、孤独感和自尊的关联。

方法

2024年12月,对日本仙台市2所公立高中的1607名女学生进行了一项基于网络的横断面调查。共有909名月经周期规律的学生完成了所有调查项目。调查包括电子健康素养量表(eHEALS)、经前症状问卷、凯斯勒心理困扰量表(K6)、修订版加州大学洛杉矶分校孤独感量表、罗森伯格自尊量表以及痛经数字评分量表。采用包括学生t检验、卡方检验、相关分析和逻辑回归分析在内的统计分析方法,来检验电子健康素养与各种健康结果之间的关系。

结果

eHEALS平均得分为22.8(标准差7.3),32.1%(292/909)的参与者被归类为具有高电子健康素养(eHEALS≥26)。电子健康素养较高的学生报告的孤独感水平显著较低,自尊水平较高。在高电子健康素养组中,经前症状的严重程度,尤其是感觉不堪重负的情况,显著较低。此外,高电子健康素养的学生中,与经前症状相关的人际困难较少见。皮尔逊相关分析表明,eHEALS得分与心理困扰(K6)和孤独感之间存在负相关,而与自尊存在正相关。逻辑回归分析表明,高自尊与高电子健康素养显著相关。

结论

本研究强调了电子健康素养在青少年医疗保健中的重要性。较高的电子健康素养与较低的孤独感、较高的自尊以及经前症状严重程度降低相关,尤其是感觉不堪重负的情况。尽管横断面设计限制了因果结论,但这些发现表明,较高的电子健康素养与青少年更好的心理和生殖健康相关联。未来的研究应采用纵向设计,纳入更多样化的人群,如男性青少年,并探索其他影响因素,以更好地阐明这些关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31c/12260469/513bf46f3b80/pediatrics_v8i1e73237_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验