Kusy Krzysztof, Ciekot-Sołtysiak Monika, Matysiak Jan, Klupczyńska-Gabryszak Agnieszka, Plewa Szymon, Zarębska Ewa Anna, Kokot Zenon J, Dereziński Paweł, Zieliński Jacek
Department of Athletics Strength and Conditioning, Poznan University of Physical Education, ul. Królowej Jadwigi 27/39, 61-871 Poznań, Poland.
Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, ul. Rokietnicka, 60-806 Poznań, Poland.
Metabolites. 2024 Jun 23;14(7):353. doi: 10.3390/metabo14070353.
We aimed to evaluate long-term changes in proteinogenic and non-proteinogenic plasma free amino acids (PFAA). Eleven male endurance triathletes participated in a 9-month study. Blood was collected at rest, immediately after exhaustive exercise, and during 30-min recovery, in four consecutive training phases: transition, general, specific, and competition. Twenty proteinogenic and 22 non-proteinogenic PFAAs were assayed using the LC-ESI-MS/MS technique. The structured training modified the patterns of exercise-induced PFAA response, with the competition phase being the most distinct from the others. Branched-chain amino acids ( = 0.002; = 0.216), phenylalanine ( = 0.015; = 0.153), methionine ( = 0.002; = 0.206), and lysine ( = 0.006; = 0.196) declined more rapidly between rest and exhaustion in the competition phase. Glutamine ( = 0.008; = 0.255), glutamate ( = 0.006; = 0.265), tyrosine ( = 0.001; = 0.195), cystine ( = 0.042; = 0.183), and serine ( < 0.001; = 0.346) levels were reduced in the competition phase. Arginine ( = 0.046; = 0.138) and aspartate ( = 0.011; = 0.171) levels were highest during exercise in the transition phase. During the competition phase, α-aminoadipic acid ( = 0.023; = 0.145), β-aminoisobutyric acid ( = 0.007; = 0.167), β-alanine ( < 0.001; = 0.473), and sarcosine ( = 0.017; = 0.150) levels increased, whereas phosphoethanolamine ( = 0.037; = 0.189) and taurine ( = 0.008; = 0.251) concentrations decreased. Overtraining indicators were not elevated. The altered PFAA profile suggests adaptations within energy metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, ammonia neutralization, the purine nucleotide cycle, and buffering of intracellular H ions. The changes seem to reflect normal adaptations.
我们旨在评估蛋白质ogenic和非蛋白质ogenic血浆游离氨基酸(PFAA)的长期变化。11名男性耐力三项全能运动员参与了一项为期9个月的研究。在四个连续的训练阶段:过渡期、一般期、专项期和比赛期,于静息状态、力竭运动后即刻以及30分钟恢复期间采集血液。使用LC - ESI - MS/MS技术测定了20种蛋白质ogenic和22种非蛋白质ogenic PFAA。结构化训练改变了运动诱导的PFAA反应模式,比赛期与其他阶段最为不同。在比赛期,支链氨基酸(P = 0.002;效应量 = 0.216)、苯丙氨酸(P = 0.015;效应量 = 0.153)、蛋氨酸(P = 0.002;效应量 = 0.206)和赖氨酸(P = 0.006;效应量 = 0.196)在静息和力竭之间下降得更快。谷氨酰胺(P = 0.008;效应量 = 0.255)、谷氨酸(P = 0.006;效应量 = 0.265)、酪氨酸(P = 0.001;效应量 = 0.195)、胱氨酸(P = 0.042;效应量 = 0.183)和丝氨酸(P < 0.001;效应量 = 0.346)水平在比赛期降低。精氨酸(P = 0.046;效应量 = 0.138)和天冬氨酸(P = 0.011;效应量 = 0.171)水平在过渡期运动期间最高。在比赛期,α - 氨基己二酸(P = 0.023;效应量 = 0.145)、β - 氨基异丁酸(P = 0.007;效应量 = 0.167)、β - 丙氨酸(P < 0.001;效应量 = 0.473)和肌氨酸(P = 0.017;效应量 = 0.150)水平升高,而磷酸乙醇胺(P = 0.037;效应量 = 0.189)和牛磺酸(P = 0.008;效应量 = 0.251)浓度降低。过度训练指标未升高。PFAA谱的改变表明能量代谢途径如三羧酸循环、氧化磷酸化、氨中和、嘌呤核苷酸循环以及细胞内H⁺缓冲等方面的适应性变化。这些变化似乎反映了正常的适应性。