Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
School of Public Health, The University of Hong Kong, Pok Fu Lam, HKSAR, China.
Biosens Bioelectron. 2024 Nov 1;263:116597. doi: 10.1016/j.bios.2024.116597. Epub 2024 Jul 20.
Traditional temporary cardiac pacemakers (TCPs), which employ transcutaneous leads and external wired power systems are battery-dependent and generally non-absorbable with rigidity, thereby necessitating surgical retrieval after therapy and resulting in potentially severe complications. Wireless and bioresorbable transient pacemakers have, hence, emerged recently, though hitting a bottleneck of unfavorable tissue-device bonding interface subject to mismatched mechanical modulus, low adhesive strength, inferior electrical performances, and infection risks. Here, to address such crux, we develop a multifunctional interface hydrogel (MIH) with superior electrical performance to facilitate efficient electrical exchange, comparable mechanical strength to natural heart tissue, robust adhesion property to enable stable device-tissue fixation (tensile strength: ∼30 kPa, shear strength of ∼30 kPa, and peel-off strength: ∼85 kPa), and good bactericidal effect to suppress bacterial growth. Through delicate integration of this versatile MIH with a leadless, battery-free, wireless, and transient pacemaker, the entire system exhibits stable and conformal adhesion to the beating heart while enabling precise and constant electrical stimulation to modulate the cardiac rhythm. It is envisioned that this versatile MIH and the proposed integration framework will have immense potential in overcoming key limitations of traditional TCPs, and may inspire the design of novel bioelectronic-tissue interfaces for next-generation implantable medical devices.
传统的经皮临时心脏起搏器(TCPs)采用经皮导联和外部有线电源系统,依赖电池且通常不可吸收且刚性大,因此在治疗后需要通过手术取出,从而导致潜在的严重并发症。无线和可生物吸收的瞬态起搏器最近已经出现,尽管它们遇到了不理想的组织-设备结合界面的瓶颈问题,例如机械模量不匹配、低黏附强度、较差的电气性能和感染风险。在这里,为了解决这个关键问题,我们开发了一种具有优异电气性能的多功能接口水凝胶(MIH),以促进有效的电交换,其机械强度可与天然心脏组织相媲美,具有强大的黏附性能,能够实现稳定的设备-组织固定(拉伸强度:30kPa,剪切强度:30kPa,剥离强度:~85kPa),并且具有良好的杀菌效果,可以抑制细菌生长。通过巧妙地将这种多功能 MIH 与无引线、无电池、无线和瞬态起搏器集成,整个系统能够稳定地贴合跳动的心脏,并实现精确和持续的电刺激,从而调节心脏节律。预计这种多功能 MIH 和所提出的集成框架将在克服传统 TCPs 的关键限制方面具有巨大的潜力,并可能为下一代植入式医疗设备的新型生物电子-组织界面设计提供灵感。