Suppr超能文献

弥合差距:整合3D生物打印与微流控技术以构建生物医学研究中的先进多器官模型

Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research.

作者信息

De Spirito Marco, Palmieri Valentina, Perini Giordano, Papi Massimiliano

机构信息

Department of Neuroscience, Universita Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.

Istituti di Ricovero e Cura a Carattere Scientifico IRCSS, Fondazione Policlinico Universitario "A. Gemelli", Largo A. Gemelli 8, 00168 Rome, Italy.

出版信息

Bioengineering (Basel). 2024 Jun 28;11(7):664. doi: 10.3390/bioengineering11070664.

Abstract

Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments.

摘要

3D生物打印和微流控芯片实验室系统的最新进展为解决生物医学研究中传统动物模型的局限性提供了有前景的解决方案。三维生物打印能够创建复杂的、针对患者的组织模型,比动物模型更准确地模拟人体生理机能。这些3D生物打印组织与微流控系统集成后,能够复制人体的动态环境,从而开发多器官模型。这种集成通过模拟不同器官系统之间的相互作用,有助于进行更精确的药物筛选和个性化治疗开发。此类创新不仅提高了预测准确性,还解决了与动物试验相关的伦理问题,符合3R原则。未来的发展方向包括提高生物打印分辨率、开发先进的生物墨水以及引入人工智能以优化系统设计。这些技术有望彻底改变药物开发、再生医学和疾病建模,带来更有效、个性化和人道的治疗方法。

相似文献

2
Application of three-dimensional (3D) bioprinting in anti-cancer therapy.三维(3D)生物打印在抗癌治疗中的应用。
Heliyon. 2023 Sep 28;9(10):e20475. doi: 10.1016/j.heliyon.2023.e20475. eCollection 2023 Oct.
9
3D bioprinting of tissues and organs for regenerative medicine.组织和器官的 3D 生物打印用于再生医学。
Adv Drug Deliv Rev. 2018 Jul;132:296-332. doi: 10.1016/j.addr.2018.07.004. Epub 2018 Jul 7.

引用本文的文献

本文引用的文献

2
Extreme transport of light in spheroids of tumor cells.肿瘤细胞球体中的光的超折射。
Nat Commun. 2023 Aug 3;14(1):4662. doi: 10.1038/s41467-023-40379-7.
6
Microfluidics for Biomedical Applications.微流控技术在生物医学中的应用。
Biosensors (Basel). 2023 Jan 20;13(2):161. doi: 10.3390/bios13020161.
9
Why 90% of clinical drug development fails and how to improve it?为什么90%的临床药物研发会失败以及如何改进?
Acta Pharm Sin B. 2022 Jul;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002. Epub 2022 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验