Nigro Arianna, Jutzi Eric, Oppliger Fabian, De Palma Franco, Olsen Christian, Ruiz-Caridad Alicia, Gadea Gerard, Scarlino Pasquale, Zardo Ilaria, Hofmann Andrea
Physics Department, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland.
Hybrid Quantum Circuits Laboratory, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
ACS Appl Electron Mater. 2024 Jun 26;6(7):5094-5100. doi: 10.1021/acsaelm.4c00654. eCollection 2024 Jul 23.
One of the most promising platforms for the realization of spin-based quantum computing are planar germanium quantum wells embedded between silicon-germanium barriers. To achieve comparably thin stacks with little surface roughness, this type of heterostructure can be grown using the so-called reverse linear grading approach, where the growth starts with a virtual germanium substrate followed by a graded silicon-germanium alloy with an increasing silicon content. However, the compatibility of such reverse-graded heterostructures with superconducting microwave resonators has not yet been demonstrated. Here, we report on the successful realization of well-controlled double quantum dots and high-quality coplanar waveguide resonators on the same reverse-graded Ge/SiGe heterostructure.
实现基于自旋的量子计算最有前景的平台之一是嵌入硅锗势垒之间的平面锗量子阱。为了实现具有低表面粗糙度的相当薄的堆叠结构,可以使用所谓的反向线性渐变方法来生长这种类型的异质结构,即生长开始于虚拟锗衬底,然后是硅含量逐渐增加的渐变硅锗合金。然而,这种反向渐变异质结构与超导微波谐振器的兼容性尚未得到证实。在此,我们报告了在同一反向渐变的Ge/SiGe异质结构上成功实现了可控的双量子点和高质量的共面波导谐振器。