Suppr超能文献

用于差分网络分析的聚类D-迹损失

The cluster D-trace loss for differential network analysis.

作者信息

Yan Han, Lu Shuhan, Zhang Sanguo

机构信息

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China.

Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing, People's Republic of China.

出版信息

J Appl Stat. 2023 Aug 14;51(10):1843-1860. doi: 10.1080/02664763.2023.2245178. eCollection 2024.

Abstract

A growing literature suggests that gene expression can be greatly altered in disease conditions, and identifying those changes will improve the understanding of complex diseases such as cancers or diabetes. A prevailing direction in the analysis of gene expression studies the changes in gene pathways which include sets of related genes. Therefore, introducing structured exploration to differential analysis of gene expression networks may lead to meaningful discoveries. The topic of this paper is differential network analysis, which focuses on capturing the differences between two or more precision matrices. We discuss the connection between the thresholding method and the D-trace loss method on differential network analysis in the case that the precision matrices share the common connected components. Based on this connection, we further propose the cluster D-trace loss method which directly estimates the differential network and achieves model selection consistency. Simulation studies demonstrate its improved performance and computational efficiency. Finally, the usefulness of our proposed estimator is demonstrated by a real-data analysis on non-small cell lung cancer.

摘要

越来越多的文献表明,在疾病状态下基因表达会发生很大改变,识别这些变化将有助于加深对癌症或糖尿病等复杂疾病的理解。基因表达分析中一个流行的方向是研究基因通路的变化,基因通路包括相关基因集。因此,将结构化探索引入基因表达网络的差异分析可能会带来有意义的发现。本文的主题是差异网络分析,其重点是捕捉两个或多个精度矩阵之间的差异。我们讨论了在精度矩阵共享共同连通分量的情况下,阈值化方法与差异网络分析中的D-迹损失方法之间的联系。基于这种联系,我们进一步提出了聚类D-迹损失方法,该方法直接估计差异网络并实现模型选择一致性。模拟研究证明了其改进的性能和计算效率。最后,通过对非小细胞肺癌的实际数据分析证明了我们提出的估计器的有效性。

相似文献

1
The cluster D-trace loss for differential network analysis.用于差分网络分析的聚类D-迹损失
J Appl Stat. 2023 Aug 14;51(10):1843-1860. doi: 10.1080/02664763.2023.2245178. eCollection 2024.
4
Joint Estimation of Precision Matrices in Heterogeneous Populations.异质群体中精度矩阵的联合估计
Electron J Stat. 2016;10(1):1341-1392. doi: 10.1214/16-EJS1137. Epub 2016 May 31.
9
Node-based differential network analysis in genomics.基因组学中基于节点的差异网络分析
Comput Biol Chem. 2017 Aug;69:194-201. doi: 10.1016/j.compbiolchem.2017.03.010. Epub 2017 Apr 4.
10
Estimation of multiple networks in Gaussian mixture models.高斯混合模型中多个网络的估计
Electron J Stat. 2016;10:1133-1154. doi: 10.1214/16-EJS1135. Epub 2016 May 2.

本文引用的文献

1
Differential Network Analysis: A Statistical Perspective.差异网络分析:统计学视角
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.
2
Stability estimation for unsupervised clustering: A review.无监督聚类的稳定性估计:综述
Wiley Interdiscip Rev Comput Stat. 2022 Nov-Dec;14(6):e1575. doi: 10.1002/wics.1575. Epub 2022 Jan 9.
8
Joint Estimation of Precision Matrices in Heterogeneous Populations.异质群体中精度矩阵的联合估计
Electron J Stat. 2016;10(1):1341-1392. doi: 10.1214/16-EJS1137. Epub 2016 May 31.
9
The non-small-cell lung cancer drug market.非小细胞肺癌药物市场。
Nat Rev Drug Discov. 2016 Apr;15(4):229-30. doi: 10.1038/nrd.2016.42.
10
Bayesian Inference of Multiple Gaussian Graphical Models.多个高斯图形模型的贝叶斯推断
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验