Suppr超能文献

转录组范围内的 m6A 甲基化图谱揭示了其在小麦(Triticum aestivum L.)干旱响应中的潜在作用。

Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.).

机构信息

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China.

Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 743004, Henan, China.

出版信息

Planta. 2024 Jul 29;260(3):65. doi: 10.1007/s00425-024-04491-2.

Abstract

This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.

摘要

本研究揭示了干旱胁迫下的全转录组 m6A 甲基化谱,并发现 TaETC9 可能通过介导小麦 RNA 甲基化来调节耐旱性。干旱是限制作物生长和发育的最具破坏性的环境限制因素之一。N6-甲基腺苷(m6A)是各种真核 RNA 分子中普遍存在且重要的一种转录后修饰,在植物的干旱响应中发挥着关键作用。然而,m6A 在小麦(Triticum aestivum L.)中的重要性,特别是其在干旱响应中的作用,仍未得到充分探索。在这项研究中,我们使用平行 m6A 免疫沉淀测序(MeRIP-seq)研究了干旱胁迫下的全转录组 m6A 图谱。总共获得了 3733 个 m6A 修饰基因中的 4221 个 m6A 峰,其中 373 个甲基化峰在对照(CK)和干旱处理之间表现出差异表达。这些 m6A 位点在靠近终止密码子和 3'-非翻译区附近显著富集。MeRIP-seq 和 RNA-seq 的整合显示 m6A 甲基化与 mRNA 丰度之间存在正相关,并且获得了同时显示差异甲基化和表达的基因。最后,进一步进行了 qRT-PCR 分析,结果发现 m6A 结合蛋白(TaETC9)在干旱胁迫下显著上调,而 m6A 去甲基化酶(TaALKBH10B)显著下调,导致 m6A 水平增加。此外,与野生型相比,TaECT9 的功能丧失突变体表现出明显更高的干旱敏感性,突出了其在调节耐旱性中的作用。本研究报道了与干旱胁迫相关的第一个小麦 m6A 图谱,为揭示 RNA 甲基化在干旱响应中的潜在作用以及通过表观遗传途径提高小麦的耐旱性奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验