Suppr超能文献

沙棘( Linn.)的 mA 甲基组的独特特征及其对干旱胁迫的响应。

Unique features of the mA methylome and its response to drought stress in sea buckthorn ( Linn.).

机构信息

State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.

Non-timber Forestry Research and Development Center, Chinese Academy of Forestry & Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou, China.

出版信息

RNA Biol. 2021 Nov 12;18(sup2):794-803. doi: 10.1080/15476286.2021.1992996. Epub 2021 Nov 21.

Abstract

In plants, recent studies have revealed that N6-methyladenosine (mA) methylation of mRNA has potential regulatory functions of this mRNA modification in many biological processes. mA methyltransferase, mA demethylase and mA-binding proteins can cause differential phenotypes, indicating that mA may have critical roles in the plant. In this study, we depicted the mA map of sea buckthorn ( Linn.) transcriptome. Similar to , mA sites of sea buckthorn transcriptome is significantly enriched around the stop codon and within 3'-untranslated regions (3'UTR). Gene ontology analysis shows that the mA modification genes are associated with metabolic biosynthesis. In addition, we identified 13,287 different mA peaks (DMPs) between leaf under drought (TR) and control (CK) treatment. It reveals that mA has a high level of conservation and has a positive correlation with mRNA abundance in plants. GO and KEGG enrichment results showed that DMP modification DEGs in TR were particularly associated with ABA biosynthesis. Interestingly, our results showed three mA demethylase ( and ) genes were significantly increased following drought stress, which indicated that it may contributed the decreased mA levels. This exhaustive mA map provides a basis and resource for the further functional study of mRNA mA modification in abiotic stress.

摘要

在植物中,最近的研究表明,mRNA 中的 N6-甲基腺苷(m6A)甲基化在许多生物过程中对这种 mRNA 修饰具有潜在的调控功能。m6A 甲基转移酶、m6A 去甲基化酶和 m6A 结合蛋白可引起表型差异,表明 m6A 可能在植物中具有关键作用。在这项研究中,我们描绘了沙棘(Linn.)转录组的 m6A 图谱。与 类似,沙棘转录组的 m6A 位点在终止密码子附近和 3'-非翻译区(3'UTR)内显著富集。GO 分析表明,m6A 修饰基因与代谢生物合成有关。此外,我们在干旱(TR)和对照(CK)处理的叶片之间鉴定出了 13287 个不同的 m6A 峰(DMP)。这表明 m6A 在植物中具有高度的保守性,并且与 mRNA 丰度呈正相关。GO 和 KEGG 富集结果表明,TR 中 DMP 修饰的 DEGs 特别与 ABA 生物合成有关。有趣的是,我们的结果表明,三个 m6A 去甲基化酶(和)基因在干旱胁迫下显著增加,这表明它可能导致 m6A 水平降低。这个详尽的 m6A 图谱为进一步研究非生物胁迫下 mRNA m6A 修饰的功能提供了基础和资源。

相似文献

1
Unique features of the mA methylome and its response to drought stress in sea buckthorn ( Linn.).
RNA Biol. 2021 Nov 12;18(sup2):794-803. doi: 10.1080/15476286.2021.1992996. Epub 2021 Nov 21.
2
Transcriptomic analysis of drought stress responses of sea buckthorn (Hippophae rhamnoidessubsp. sinensis) by RNA-Seq.
PLoS One. 2018 Aug 13;13(8):e0202213. doi: 10.1371/journal.pone.0202213. eCollection 2018.
4
Transcriptome and DNA methylome provide insights into the molecular regulation of drought stress in sea buckthorn.
Genomics. 2022 May;114(3):110345. doi: 10.1016/j.ygeno.2022.110345. Epub 2022 Mar 20.
6
Coordination of mA mRNA Methylation and Gene Transcriptome in Sugarcane Response to Drought Stress.
Plants (Basel). 2023 Oct 24;12(21):3668. doi: 10.3390/plants12213668.
8
Unique features of the m6A methylome in Arabidopsis thaliana.
Nat Commun. 2014 Nov 28;5:5630. doi: 10.1038/ncomms6630.
9
N6-methyladenosine RNA modification regulates cotton drought response in a Ca and ABA-dependent manner.
Plant Biotechnol J. 2023 Jun;21(6):1270-1285. doi: 10.1111/pbi.14036. Epub 2023 Mar 22.
10
HrTCP20 dramatically enhance drought tolerance of sea buckthorn (Hippophae rhamnoides L). by mediating the JA signaling pathway.
Plant Physiol Biochem. 2022 Mar 1;174:51-62. doi: 10.1016/j.plaphy.2022.01.026. Epub 2022 Feb 3.

引用本文的文献

1
Subgenome Dominance in Allotetraploid Actinidia valvata Regulates RNA mA Modification for Waterlogging Tolerance.
Adv Sci (Weinh). 2025 Aug;12(32):e03974. doi: 10.1002/advs.202503974. Epub 2025 Jun 5.
2
RNA mA modification meets plant hormones.
Nat Plants. 2025 Apr;11(4):686-695. doi: 10.1038/s41477-025-01947-5. Epub 2025 Mar 28.
3
RNA modifications in plant adaptation to abiotic stresses.
Plant Commun. 2025 Feb 10;6(2):101229. doi: 10.1016/j.xplc.2024.101229. Epub 2024 Dec 21.
4
Growth and physiological response of Yulu to drought stress and its omics analysis.
Plant Signal Behav. 2024 Dec 31;19(1):2439256. doi: 10.1080/15592324.2024.2439256. Epub 2024 Dec 9.
5
Detection, distribution, and functions of RNA -methyladenosine (mA) in plant development and environmental signal responses.
Front Plant Sci. 2024 Jul 16;15:1429011. doi: 10.3389/fpls.2024.1429011. eCollection 2024.
8
Exploring -methyladenosine (mA) modification in tree species: opportunities and challenges.
Hortic Res. 2023 Dec 29;11(2):uhad284. doi: 10.1093/hr/uhad284. eCollection 2024 Feb.
9
10
Coordination of mA mRNA Methylation and Gene Transcriptome in Sugarcane Response to Drought Stress.
Plants (Basel). 2023 Oct 24;12(21):3668. doi: 10.3390/plants12213668.

本文引用的文献

1
N -Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis.
Plant J. 2021 Jun;106(6):1759-1775. doi: 10.1111/tpj.15270. Epub 2021 May 7.
2
Analysis of N-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum.
Plant Sci. 2021 Mar;304:110801. doi: 10.1016/j.plantsci.2020.110801. Epub 2020 Dec 14.
3
Transcriptome-Wide mA Methylation in Skin Lesions From Patients With Psoriasis Vulgaris.
Front Cell Dev Biol. 2020 Nov 5;8:591629. doi: 10.3389/fcell.2020.591629. eCollection 2020.
5
Global profiling of N -methyladenosine methylation in maize callus induction.
Plant Genome. 2020 Jul;13(2):e20018. doi: 10.1002/tpg2.20018. Epub 2020 Apr 17.
7
Transcriptome-Wide -Methyladenosine (mA) Methylome Profiling of Heat Stress in Pak-choi ( ssp. ).
Plants (Basel). 2020 Aug 22;9(9):1080. doi: 10.3390/plants9091080.
8
METTL3 plays multiple functions in biological processes.
Am J Cancer Res. 2020 Jun 1;10(6):1631-1646. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验