文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种联合微流控深度学习方法,用于高通量筛选肺癌细胞,以实现自动癌症筛查应用。

A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications.

机构信息

Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran, Iran.

Biomedical Engineering Group, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.

出版信息

Sci Rep. 2021 May 7;11(1):9804. doi: 10.1038/s41598-021-89352-8.


DOI:10.1038/s41598-021-89352-8
PMID:33963232
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8105370/
Abstract

Lung cancer is a leading cause of cancer death in both men and women worldwide. The high mortality rate in lung cancer is in part due to late-stage diagnostics as well as spread of cancer-cells to organs and tissues by metastasis. Automated lung cancer detection and its sub-types classification from cell's images play a crucial role toward an early-stage cancer prognosis and more individualized therapy. The rapid development of machine learning techniques, especially deep learning algorithms, has attracted much interest in its application to medical image problems. In this study, to develop a reliable Computer-Aided Diagnosis (CAD) system for accurately distinguishing between cancer and healthy cells, we grew popular Non-Small Lung Cancer lines in a microfluidic chip followed by staining with Phalloidin and images were obtained by using an IX-81 inverted Olympus fluorescence microscope. We designed and tested a deep learning image analysis workflow for classification of lung cancer cell-line images into six classes, including five different cancer cell-lines (P-C9, SK-LU-1, H-1975, A-427, and A-549) and normal cell-line (16-HBE). Our results demonstrate that ResNet18, a residual learning convolutional neural network, is an efficient and promising method for lung cancer cell-lines categorization with a classification accuracy of 98.37% and F1-score of 97.29%. Our proposed workflow is also able to successfully distinguish normal versus cancerous cell-lines with a remarkable average accuracy of 99.77% and F1-score of 99.87%. The proposed CAD system completely eliminates the need for extensive user intervention, enabling the processing of large amounts of image data with robust and highly accurate results.

摘要

肺癌是全世界男性和女性癌症死亡的主要原因。肺癌的高死亡率部分归因于晚期诊断,以及癌细胞通过转移扩散到器官和组织。从细胞图像中自动检测肺癌及其亚型分类对早期癌症预后和更个体化的治疗至关重要。机器学习技术的快速发展,特别是深度学习算法,引起了人们对其在医学图像问题中的应用的极大兴趣。在这项研究中,为了开发一种可靠的计算机辅助诊断 (CAD) 系统,以准确区分癌症和健康细胞,我们在微流控芯片中培养了流行的非小细胞肺癌系,然后用鬼笔环肽染色,并使用 IX-81 倒置 Olympus 荧光显微镜获取图像。我们设计并测试了一种深度学习图像分析工作流程,用于将肺癌细胞系图像分类为六个类别,包括五种不同的肺癌细胞系 (P-C9、SK-LU-1、H-1975、A-427 和 A-549) 和正常细胞系 (16-HBE)。我们的结果表明,ResNet18,一种残差学习卷积神经网络,是一种高效且有前途的肺癌细胞系分类方法,分类准确率为 98.37%,F1 得分为 97.29%。我们提出的工作流程还能够成功地区分正常细胞系和癌细胞系,平均准确率达到 99.77%,F1 得分为 99.87%。所提出的 CAD 系统完全消除了对大量用户干预的需求,能够处理大量图像数据,并获得稳健且高度准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/9eefce2787db/41598_2021_89352_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/13f85d036a77/41598_2021_89352_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/03223ca7202f/41598_2021_89352_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/a37ffa138d37/41598_2021_89352_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/9eefce2787db/41598_2021_89352_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/13f85d036a77/41598_2021_89352_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/03223ca7202f/41598_2021_89352_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/a37ffa138d37/41598_2021_89352_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8105370/9eefce2787db/41598_2021_89352_Fig4_HTML.jpg

相似文献

[1]
A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications.

Sci Rep. 2021-5-7

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[4]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[5]
Pulmonary nodule detection in low dose computed tomography using a medical-to-medical transfer learning approach.

J Med Imaging (Bellingham). 2024-7

[6]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[7]
Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.

Hum Reprod. 2025-1-1

[8]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[9]
Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.

Comput Biol Med. 2024-8

[10]
CNN based method for classifying cervical cancer cells in pap smear images.

Sci Rep. 2025-7-4

引用本文的文献

[1]
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells.

Biosensors (Basel). 2025-7-16

[2]
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.

J Funct Biomater. 2025-5-8

[3]
Cancer-on-a-chip for precision cancer medicine.

Lab Chip. 2025-5-16

[4]
The Latest Advances in Microfluidic DLD Cell Sorting Technology: The Optimization of Channel Design.

Biosensors (Basel). 2025-2-19

[5]
Machine Learning-Driven Innovations in Microfluidics.

Biosensors (Basel). 2024-12-13

[6]
Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing For Clinical Decisions.

ACS Sens. 2024-9-27

[7]
scHiCyclePred: a deep learning framework for predicting cell cycle phases from single-cell Hi-C data using multi-scale interaction information.

Commun Biol. 2024-7-31

[8]
Prediction of anticancer drug resistance using a 3D microfluidic bladder cancer model combined with convolutional neural network-based image analysis.

Front Bioeng Biotechnol. 2024-1-10

[9]
Microfluidics-based patient-derived disease detection tool for deep learning-assisted precision medicine.

Biomicrofluidics. 2024-1-12

[10]
Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis.

Biosensors (Basel). 2023-9-13

本文引用的文献

[1]
Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy.

Int J Nanomedicine. 2020-8-18

[2]
Weakly-supervised learning for lung carcinoma classification using deep learning.

Sci Rep. 2020-6-9

[3]
Psychosocial consequences of false positives in the Danish Lung Cancer CT Screening Trial: a nested matched cohort study.

BMJ Open. 2020-6-4

[4]
Capture and detection of rare cancer cells in blood by intrinsic fluorescence of a novel functionalized diatom.

Photodiagnosis Photodyn Ther. 2020-6

[5]
Lesion-Based Convolutional Neural Network in Diagnosis of Early Gastric Cancer.

Clin Endosc. 2020-3

[6]
PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform.

Nanomaterials (Basel). 2020-4-2

[7]
Gold Nanowires/Fibrin Nanostructure as Microfluidics Platforms for Enhancing Stem Cell Differentiation: Bio-AFM Study.

Micromachines (Basel). 2019-12-30

[8]
Prostate Cancer Detection using Deep Convolutional Neural Networks.

Sci Rep. 2019-12-20

[9]
Artificial Intelligence in Lung Cancer Pathology Image Analysis.

Cancers (Basel). 2019-10-28

[10]
Deep Learning to Improve Breast Cancer Detection on Screening Mammography.

Sci Rep. 2019-8-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索