Brosig Johanna, Krüger Nina, Khasyanova Inna, Wamala Isaac, Ivantsits Matthias, Sündermann Simon, Kempfert Jörg, Heldmann Stefan, Hennemuth Anja
Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.
J Med Imaging (Bellingham). 2024 Jul;11(4):044504. doi: 10.1117/1.JMI.11.4.044504. Epub 2024 Jul 30.
Analyzing the anatomy of the aorta and left ventricular outflow tract (LVOT) is crucial for risk assessment and planning of transcatheter aortic valve implantation (TAVI). A comprehensive analysis of the aortic root and LVOT requires the extraction of the patient-individual anatomy via segmentation. Deep learning has shown good performance on various segmentation tasks. If this is formulated as a supervised problem, large amounts of annotated data are required for training. Therefore, minimizing the annotation complexity is desirable.
We propose two-dimensional (2D) cross-sectional annotation and point cloud-based surface reconstruction to train a fully automatic 3D segmentation network for the aortic root and the LVOT. Our sparse annotation scheme enables easy and fast training data generation for tubular structures such as the aortic root. From the segmentation results, we derive clinically relevant parameters for TAVI planning.
The proposed 2D cross-sectional annotation results in high inter-observer agreement [Dice similarity coefficient (DSC): 0.94]. The segmentation model achieves a DSC of 0.90 and an average surface distance of 0.96 mm. Our approach achieves an aortic annulus maximum diameter difference between prediction and annotation of 0.45 mm (inter-observer variance: 0.25 mm).
The presented approach facilitates reproducible annotations. The annotations allow for training accurate segmentation models of the aortic root and LVOT. The segmentation results facilitate reproducible and quantifiable measurements for TAVI planning.
分析主动脉及左心室流出道(LVOT)的解剖结构对于经导管主动脉瓣植入术(TAVI)的风险评估和手术规划至关重要。对主动脉根部和LVOT进行全面分析需要通过分割提取患者个体的解剖结构。深度学习在各种分割任务中表现良好。如果将此问题设定为监督问题,则训练需要大量带注释的数据。因此,尽量减少注释的复杂性是很有必要的。
我们提出二维(2D)横截面注释和基于点云的表面重建方法,以训练用于主动脉根部和LVOT的全自动三维分割网络。我们的稀疏注释方案能够轻松快速地生成用于管状结构(如主动脉根部)的训练数据。从分割结果中,我们得出用于TAVI规划的临床相关参数。
所提出的二维横截面注释在观察者间一致性方面表现较高[骰子相似系数(DSC):0.94]。分割模型的DSC为0.90,平均表面距离为0.96毫米。我们的方法在预测和注释之间的主动脉瓣环最大直径差异为0.45毫米(观察者间方差:0.25毫米)。
所提出的方法有助于实现可重复的注释。这些注释能够训练出准确的主动脉根部和LVOT分割模型。分割结果有助于为TAVI规划进行可重复和可量化的测量。