Jones Clara E, Oomen Pim J A
Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
Edwards Lifesciences Foundation Cardiovascular, University of California, Irvine, CA 92697, USA.
bioRxiv. 2024 Jul 22:2024.07.17.603959. doi: 10.1101/2024.07.17.603959.
Computational models that can predict growth and remodeling of the heart could have important clinical applications. However, the time it takes to calibrate and run current models while considering data uncertainty and variability makes them impractical for routine clinical use. This study aims to address this need by creating a computational framework to efficiently predict cardiac growth probability. We utilized a biophysics model to rapidly simulate cardiac growth following mitral valve regurgitation (MVR). Here we developed a two-tiered Bayesian History Matching approach augmented with Gaussian process emulators for efficient calibration of model parameters to align with growth outcomes within a 95% confidence interval. We first generated a synthetic data set to assess the accuracy of our framework, and the effect of changes in data uncertainty on growth predictions. We then calibrated our model to match baseline and chronic canine MVR data and used an independent data set to successfully validate the ability of our calibrated model to accurately predict cardiac growth probability. The combined biophysics and machine learning modeling framework we proposed in this study can be easily translated to predict patient-specific cardiac growth.
能够预测心脏生长和重塑的计算模型可能具有重要的临床应用价值。然而,在考虑数据不确定性和变异性的情况下校准和运行当前模型所需的时间,使得它们在常规临床应用中不切实际。本研究旨在通过创建一个计算框架来有效预测心脏生长概率,以满足这一需求。我们利用生物物理模型快速模拟二尖瓣反流(MVR)后的心脏生长。在此,我们开发了一种两层贝叶斯历史匹配方法,并辅以高斯过程模拟器,以便对模型参数进行有效校准,使其在95%置信区间内与生长结果相符。我们首先生成了一个合成数据集,以评估我们框架的准确性以及数据不确定性变化对生长预测的影响。然后,我们校准模型以匹配基线和慢性犬MVR数据,并使用一个独立数据集成功验证了我们校准模型准确预测心脏生长概率的能力。我们在本研究中提出的生物物理和机器学习相结合的建模框架可以很容易地转化为预测特定患者的心脏生长情况。