Suppr超能文献

人类肾脏空间转录组学数据的组织病理学分析:迈向精准病理学

Histopathologic Analysis of Human Kidney Spatial Transcriptomics Data: Toward Precision Pathology.

作者信息

Isnard Pierre, Li Dian, Xuanyuan Qiao, Wu Haojia, Humphreys Benjamin D

机构信息

Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri.

Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri.

出版信息

Am J Pathol. 2025 Jan;195(1):69-88. doi: 10.1016/j.ajpath.2024.06.011. Epub 2024 Aug 2.

Abstract

The application of spatial transcriptomics (ST) technologies is booming and has already yielded important insights across many different tissues and disease models. In nephrology, ST technologies have helped to decipher the cellular and molecular mechanisms in kidney diseases and have allowed the recent creation of spatially anchored human kidney atlases of healthy and diseased kidney tissues. During ST data analysis, the computationally annotated clusters are often superimposed on a histologic image without their initial identification being based on the morphologic and/or spatial analyses of the tissues and lesions. Herein, histopathologic ST data from a human kidney sample were modeled to correspond as closely as possible to the kidney biopsy sample in a health care or research context. This study shows the feasibility of a morphology-based approach to interpreting ST data, helping to improve our understanding of the lesion phenomena at work in chronic kidney disease at both the cellular and the molecular level. Finally, the newly identified pathology-based clusters could be accurately projected onto other slides from nephrectomy or needle biopsy samples. Thus, they serve as a reference for analyzing other kidney tissues, paving the way for the future of molecular microscopy and precision pathology.

摘要

空间转录组学(ST)技术的应用正在蓬勃发展,并且已经在许多不同组织和疾病模型中产生了重要见解。在肾脏病学中,ST技术有助于破译肾脏疾病中的细胞和分子机制,并使得最近创建了健康和患病肾脏组织的空间锚定人类肾脏图谱。在ST数据分析过程中,通过计算注释的聚类通常叠加在组织学图像上,而其最初识别并非基于组织和病变的形态学和/或空间分析。在此,对来自人类肾脏样本的组织病理学ST数据进行建模,以在医疗保健或研究背景下尽可能与肾脏活检样本相对应。本研究展示了基于形态学方法解释ST数据的可行性,有助于在细胞和分子水平上提高我们对慢性肾脏病中病变现象的理解。最后,新确定的基于病理学的聚类可以准确地投影到肾切除术或穿刺活检样本的其他载玻片上。因此,它们可作为分析其他肾脏组织的参考,为分子显微镜和精准病理学的未来铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验