Suppr超能文献

使用摄像机或可穿戴传感器预测步态中的膝关节接触力峰值。

Predicting Knee Joint Contact Force Peaks During Gait Using a Video Camera or Wearable Sensors.

机构信息

Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.

Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland.

出版信息

Ann Biomed Eng. 2024 Dec;52(12):3280-3294. doi: 10.1007/s10439-024-03594-x. Epub 2024 Aug 3.

Abstract

PURPOSE

Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks.

METHODS

We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics).

RESULTS

Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data.

DISCUSSION

The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.

摘要

目的

估计膝关节的负荷可能有助于管理退行性关节疾病。目前,估计负荷的方法包括使用运动捕捉(MOCAP)数据从肌肉骨骼建模和模拟中计算膝关节接触力,这必须在专门的环境中收集,并由经过培训的专家进行分析。为了使膝关节负荷的估计更容易获得,可以使用简单的输入预测因子,通过人工神经网络(ANNs)预测膝关节负荷。

方法

我们使用现有的 MOCAP 数据,通过训练前馈人工神经网络(ANNs),从受试者的体重、身高、年龄、性别、步行速度和膝关节弯曲角度(KFA)预测膝关节负荷峰值。我们还使用视频摄像机(VC)和惯性测量单元(IMUs)同时收集了独立的 MOCAP 数据集。我们分别使用(1)MOCAP 数据、(2)VC 数据和(3)IMU 数据来量化 ANN 的预测准确性(即,我们量化了三组预测准确性指标)。

结果

使用便携式设备,我们在将基于肌肉骨骼分析的参考值的均方根误差归一化后,实现了 0.13 到 0.37 的预测精度。预测负荷峰值与参考负荷峰值之间的相关性在 0.65 到 0.91 之间。这与从运动捕捉数据获得预测因子时获得的预测精度相当。

讨论

预测结果表明,VC 和 IMU 都可以用于估计可以用于在运动实验室外估计膝关节负荷的预测因子。未来的研究应该调查这些方法在实验室外环境中的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/11561138/8952d17806bc/10439_2024_3594_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验