Suppr超能文献

深度生成模型在从头药物设计中的应用进展

Application progress of deep generative models in de novo drug design.

作者信息

Liu Yingxu, Xu Chengcheng, Yang Xinyi, Zhang Yanmin, Chen Yadong, Liu Haichun

机构信息

School of Science, China Pharmaceutical University, Nanjing, 210009, China.

出版信息

Mol Divers. 2024 Aug;28(4):2411-2427. doi: 10.1007/s11030-024-10942-5. Epub 2024 Aug 4.

Abstract

The deep molecular generative model has recently become a research hotspot in pharmacy. This paper analyzes a large number of recent reports and reviews these models. In the central part of this paper, four compound databases and two molecular representation methods are compared. Five model architectures and applications for deep molecular generative models are emphatically introduced. Three evaluation metrics for model evaluation are listed. Finally, the limitations and challenges in this field are discussed to provide a reference and basis for developing and researching new models published in future.

摘要

深度分子生成模型最近已成为药学领域的一个研究热点。本文分析了大量近期报告并对这些模型进行了综述。在本文的核心部分,比较了四个化合物数据库和两种分子表示方法。着重介绍了深度分子生成模型的五种模型架构及其应用。列出了用于模型评估的三个评估指标。最后,讨论了该领域的局限性和挑战,以便为未来发表的新模型的开发和研究提供参考和依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验