Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
Cancer Research Unit, Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20521 Turku, Finland.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae040.
Visualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Yet, current grammar-based solutions fall short in adequately supporting the interactive analysis of large datasets with extensive sample collections, a pivotal task often encountered in cancer research.
We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. By using combinatorial building blocks and a declarative language, users can implement new visualization designs easily and embed them in web pages or end-user-oriented applications. A distinctive element of GenomeSpy's architecture is its effective use of the graphics processing unit in all rendering, enabling a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability.
GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available at https://genomespy.app/.
可视化是基因组数据分析不可或缺的一个方面。尽管有大量专门的可视化工具,但仍然需要定制解决方案。然而,它们的实现通常需要生物信息学家和软件开发人员具备广泛的编程专业知识,特别是在构建交互式应用程序时。基于可视化语法的工具包提供了一种更易于访问、声明性的方式来创建新的可视化。然而,当前基于语法的解决方案在充分支持具有广泛样本集的大型数据集的交互式分析方面存在不足,这是癌症研究中经常遇到的关键任务。
我们提出了 GenomeSpy,这是一个基于语法的工具包,用于为基因组数据分析创作定制的交互式可视化。通过使用组合构建块和声明性语言,用户可以轻松地实现新的可视化设计,并将其嵌入网页或面向最终用户的应用程序中。GenomeSpy 架构的一个独特元素是它在所有渲染中有效利用图形处理单元,从而实现高帧率和流畅的动画交互,例如在基因组内导航。我们通过对 DECIDER 临床试验中 753 个卵巢癌患者样本的基因组景观进行特征描述,展示了 GenomeSpy 的实用性。我们的结果扩展了对卵巢癌基因组结构的理解,特别是对染色体不稳定性的多样性的理解。
GenomeSpy 是一个适用于与基因组分析相关的广泛任务的可视化工具包。它在交互式分析中提供了高度的灵活性和出色的性能。该工具包是开源的,MIT 许可证,用 JavaScript 实现,可在 https://genomespy.app/ 获得。