文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Anticancer activity of quantum size carbon dots: opportunities and challenges.

作者信息

Bhattacharya Tanima, Preetam Subham, Mukherjee Sohini, Kar Sanjukta, Roy Debanjan Singha, Singh Harshita, Ghose Arak, Das Tanmoy, Mohapatra Gautam

机构信息

Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.

Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.

出版信息

Discov Nano. 2024 Aug 5;19(1):122. doi: 10.1186/s11671-024-04069-7.


DOI:10.1186/s11671-024-04069-7
PMID:39103694
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11300426/
Abstract

Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/7a0b129101c3/11671_2024_4069_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/bb0510df0cbb/11671_2024_4069_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/e36957285563/11671_2024_4069_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/a50be0b8d41c/11671_2024_4069_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/fe170ff22fc8/11671_2024_4069_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/f0424b11d55d/11671_2024_4069_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/ff10bc40f291/11671_2024_4069_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/099fdb7d0eed/11671_2024_4069_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/6c9bfcd1c67f/11671_2024_4069_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/f77d355e8986/11671_2024_4069_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/7a0b129101c3/11671_2024_4069_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/bb0510df0cbb/11671_2024_4069_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/e36957285563/11671_2024_4069_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/a50be0b8d41c/11671_2024_4069_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/fe170ff22fc8/11671_2024_4069_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/f0424b11d55d/11671_2024_4069_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/ff10bc40f291/11671_2024_4069_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/099fdb7d0eed/11671_2024_4069_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/6c9bfcd1c67f/11671_2024_4069_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/f77d355e8986/11671_2024_4069_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead0/11300426/7a0b129101c3/11671_2024_4069_Fig10_HTML.jpg

相似文献

[1]
Anticancer activity of quantum size carbon dots: opportunities and challenges.

Discov Nano. 2024-8-5

[2]
State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery.

Langmuir. 2021-8-10

[3]
Exploring Research on the Drug Loading Capacity of Quantum Dots.

Cureus. 2024-8-26

[4]
Quantum dots: a next generation approach for pathogenic microbial biofilm inhibition; mechanistic insights, existing challenges, and future potential.

Arch Microbiol. 2024-3-13

[5]
Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications.

Pharmaceutics. 2024-2-18

[6]
Highly fluorescent carbon dots as novel theranostic agents for biomedical applications.

Nanoscale. 2021-10-28

[7]
The future of plant based green carbon dots as cancer Nanomedicine: From current progress to future Perspectives and beyond.

J Adv Res. 2025-1

[8]
Recent advances in the modification of carbon-based quantum dots for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2021-1

[9]
Diversity and Tailorability of Photoelectrochemical Properties of Carbon Dots.

Acc Chem Res. 2022-11-1

[10]
Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy.

Acta Biomater. 2020-9-15

引用本文的文献

[1]
Golden insights for exploring cancer: delivery, from genes to the human body using bimetallic Au/Ag nanostructures.

Discov Oncol. 2025-5-25

[2]
Natural biomass-derived carbon quantum dots: a path to antioxidant, anticancer, antibiofilm, and bacterial bioimaging potential.

Mikrochim Acta. 2025-4-8

[3]
Introducing carbon quantum dot-Capivasertib drug carrier complex for enhanced treatment of breast cancer.

PLoS One. 2025-3-11

[4]
Impact of irradiation conditions on therapy of Lewis lung carcinoma in mice using glucose-ethylenediamine carbon dots.

BMC Cancer. 2025-1-8

[5]
Synthesis of Zinc Oxide-Doped Carbon Dots for Treatment of Triple-Negative Breast Cancer.

Int J Nanomedicine. 2024-12-27

[6]
Emerging Fluorescent Nanoparticles for Non-Invasive Bioimaging.

Molecules. 2024-11-26

[7]
Electrical stimulation: a novel therapeutic strategy to heal biological wounds.

RSC Adv. 2024-10-11

本文引用的文献

[1]
Nano revolution: pioneering the future of water reclamation with micro-/nano-robots.

Nanoscale Adv. 2024-3-5

[2]
Carbon Quantum Dots: Properties, Preparation, and Applications.

Molecules. 2024-4-26

[3]
Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems.

ACS Biomater Sci Eng. 2024-4-8

[4]
Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment.

Biotechnol Rep (Amst). 2024-1-26

[5]
Strategic Assessment of Boron-Enriched Carbon Dots/Naproxen: Diagnostic, Toxicity, and In Vivo Therapeutic Evaluation.

Mol Pharm. 2024-2-5

[6]
CARBON DOTS: Bioimaging and Anticancer Drug Delivery.

Chemistry. 2024-4-2

[7]
Unlocking the power of nanomedicine: the future of nutraceuticals in oncology treatment.

Front Nutr. 2023-11-17

[8]
Advancement in Biopolymer Assisted Cancer Theranostics.

ACS Appl Bio Mater. 2023-10-16

[9]
In vitro and in vivo toxicity of carbon dots with different chemical compositions.

Discov Nano. 2023-9-8

[10]
Progress in drug delivery and diagnostic applications of carbon dots: a systematic review.

Front Chem. 2023-7-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索