IEEE Trans Biomed Eng. 2021 Jan;68(1):225-235. doi: 10.1109/TBME.2020.2991754. Epub 2020 Dec 21.
Recent advances in light-sheet fluorescence microscopy (LSFM) enable 3-dimensional (3-D) imaging of cardiac architecture and mechanics in toto. However, segmentation of the cardiac trabecular network to quantify cardiac injury remains a challenge.
We hereby employed "subspace approximation with augmented kernels (Saak) transform" for accurate and efficient quantification of the light-sheet image stacks following chemotherapy-treatment. We established a machine learning framework with augmented kernels based on the Karhunen-Loeve Transform (KLT) to preserve linearity and reversibility of rectification.
The Saak transform-based machine learning enhances computational efficiency and obviates iterative optimization of cost function needed for neural networks, minimizing the number of training datasets for segmentation in our scenario. The integration of forward and inverse Saak transforms can also serve as a light-weight module to filter adversarial perturbations and reconstruct estimated images, salvaging robustness of existing classification methods. The accuracy and robustness of the Saak transform are evident following the tests of dice similarity coefficients and various adversary perturbation algorithms, respectively. The addition of edge detection further allows for quantifying the surface area to volume ratio (SVR) of the myocardium in response to chemotherapy-induced cardiac remodeling.
The combination of Saak transform, random forest, and edge detection augments segmentation efficiency by 20-fold as compared to manual processing.
This new methodology establishes a robust framework for post light-sheet imaging processing, and creating a data-driven machine learning for automated quantification of cardiac ultra-structure.
光片荧光显微镜(LSFM)的最新进展能够对心脏结构和力学进行整体的三维(3-D)成像。然而,分割心脏小梁网络以定量心脏损伤仍然是一个挑战。
我们在此采用“基于增广核的子空间逼近(Saak)变换”,用于对化疗处理后的光片图像堆栈进行准确高效的量化。我们建立了一个基于 Karhunen-Loeve 变换(KLT)的增广核机器学习框架,以保持整流的线性和可逆性。
基于 Saak 变换的机器学习提高了计算效率,并避免了神经网络所需的成本函数的迭代优化,从而减少了我们场景中分割所需的训练数据集数量。正向和逆向 Saak 变换的集成还可以作为一个轻量级模块,用于过滤对抗性扰动并重建估计图像,从而挽救现有分类方法的鲁棒性。Saak 变换的准确性和鲁棒性在分别进行的骰子相似系数和各种对抗性扰动算法测试中得到了证明。添加边缘检测还可以量化心肌对化疗诱导的心脏重塑的表面积与体积比(SVR)。
与手动处理相比,Saak 变换、随机森林和边缘检测的结合将分割效率提高了 20 倍。
这种新方法为光片成像后处理建立了一个强大的框架,并为心脏超微结构的自动量化创建了一个数据驱动的机器学习。