Suppr超能文献

神经重症监护中的临床预测模型:文献综述及在创伤性脑损伤医院死亡率预测中的应用示例

Clinical Prediction Models in Neurocritical Care: An Overview of the Literature and Example Application to Prediction of Hospital Mortality in Traumatic Brain Injury.

作者信息

Powla Plamena P, Fakhri Farima, Jankowski Samantha, Mansour Ali, Polley Eric C

机构信息

Division of Neurocritical Care, Department of Neurology, University of Chicago Medical Center, 5841 S. Maryland Ave., MC 2030, Chicago, IL, 60637-1470, USA.

Department of Public Health Sciences, University of Chicago Medical Center, Chicago, IL, USA.

出版信息

Neurocrit Care. 2025 Feb;42(1):32-38. doi: 10.1007/s12028-024-02083-2. Epub 2024 Aug 6.

Abstract

Clinical prediction models serve as valuable instruments for assessing the risk of crucial outcomes and facilitating decision-making in clinical settings. Constructing these models requires nuanced analytical decisions and expertise informed by the current statistical literature. Access and thorough understanding of such literature may be limited for neurocritical care physicians, which may hinder the interpretation of existing predictive models. The present emphasis is on narrowing this knowledge gap by providing neurocritical care specialists with methodological guidance for interpreting predictive models in neurocritical care. Presented are the statistical learning principles integral to constructing a model predicting hospital mortality (nonsurvival during hospitalization) in patients with moderate and severe blunt traumatic brain injury using components of the IMPACT-Core model. Discussion encompasses critical elements such as model flexibility, hyperparameter selection, data imbalance, cross-validation, model assessment (discrimination and calibration), prediction instability, and probability thresholds. The intricate interplay among these components, the data set, and the clincal context of neurocritical care is elaborated. Leveraging this comprehensive exploration of statistical learning can enhance comprehension of articles encompassing model generation, tailored clinical care, and, ultimately, better interpretation and clinical applicability of predictive models.

摘要

临床预测模型是评估关键结局风险并促进临床决策的重要工具。构建这些模型需要细致入微的分析决策以及当前统计文献所提供的专业知识。神经重症监护医生对这类文献的获取和深入理解可能有限,这可能会妨碍对现有预测模型的解读。当前的重点是通过为神经重症监护专家提供解读神经重症监护中预测模型的方法指导来缩小这一知识差距。本文介绍了使用IMPACT-Core模型的组成部分构建预测中度和重度钝性颅脑损伤患者医院死亡率(住院期间未存活)模型所必需的统计学习原理。讨论涵盖了模型灵活性、超参数选择、数据不平衡、交叉验证、模型评估(区分度和校准)、预测不稳定性以及概率阈值等关键要素。阐述了这些组成部分、数据集以及神经重症监护临床背景之间复杂的相互作用。通过对统计学习的全面探索,可以增强对包含模型生成、个性化临床护理的文章的理解,并最终更好地解读预测模型及其临床适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验