Suppr超能文献

一种用于预测骨关节炎镇痛药副作用的可解释增强模型。

An interpretable boosting model to predict side effects of analgesics for osteoarthritis.

作者信息

Liu Liangliang, Yu Ying, Fei Zhihui, Li Min, Wu Fang-Xiang, Li Hong-Dong, Pan Yi, Wang Jianxin

机构信息

School of Information Science and Engineering, Central South University, Changsha, China.

Department of Network Center, Pingdingshan University, Pingdingshan, 467000, China.

出版信息

BMC Syst Biol. 2018 Nov 22;12(Suppl 6):105. doi: 10.1186/s12918-018-0624-4.

Abstract

BACKGROUND

Osteoarthritis (OA) is the most common disease of arthritis. Analgesics are widely used in the treat of arthritis, which may increase the risk of cardiovascular diseases by 20% to 50% overall.There are few studies on the side effects of OA medication, especially the risk prediction models on side effects of analgesics. In addition, most prediction models do not provide clinically useful interpretable rules to explain the reasoning process behind their predictions. In order to assist OA patients, we use the eXtreme Gradient Boosting (XGBoost) method to balance the accuracy and interpretability of the prediction model.

RESULTS

In this study we used the XGBoost model as a classifier, which is a supervised machine learning method and can predict side effects of analgesics for OA patients and identify high-risk features (RFs) of cardiovascular diseases caused by analgesics. The Electronic Medical Records (EMRs), which were derived from public knee OA studies, were used to train the model. The performance of the XGBoost model is superior to four well-known machine learning algorithms and identifies the risk features from the biomedical literature. In addition the model can provide decision support for using analgesics in OA patients.

CONCLUSION

Compared with other machine learning methods, we used XGBoost method to predict side effects of analgesics for OA patients from EMRs, and selected the individual informative RFs. The model has good predictability and interpretability, this is valuable for both medical researchers and patients.

摘要

背景

骨关节炎(OA)是最常见的关节炎疾病。镇痛药广泛用于关节炎治疗,总体上可能使心血管疾病风险增加20%至50%。关于OA药物副作用的研究较少,尤其是镇痛药副作用的风险预测模型。此外,大多数预测模型未提供临床上有用的可解释规则来解释其预测背后的推理过程。为了帮助OA患者,我们使用极端梯度提升(XGBoost)方法来平衡预测模型的准确性和可解释性。

结果

在本研究中,我们将XGBoost模型用作分类器,这是一种监督式机器学习方法,可预测OA患者使用镇痛药的副作用,并识别由镇痛药引起的心血管疾病的高风险特征(RFs)。源自公共膝关节OA研究的电子病历(EMRs)用于训练模型。XGBoost模型的性能优于四种著名的机器学习算法,并从生物医学文献中识别出风险特征。此外,该模型可为OA患者使用镇痛药提供决策支持。

结论

与其他机器学习方法相比,我们使用XGBoost方法从EMRs中预测OA患者使用镇痛药的副作用,并选择了具有个体信息的RFs。该模型具有良好的预测性和可解释性,这对医学研究人员和患者都有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验