Suppr超能文献

经导管主动脉瓣置换术后患者预后可改变预测因素的机器学习识别

Machine Learning Identification of Modifiable Predictors of Patient Outcomes After Transcatheter Aortic Valve Replacement.

作者信息

Russo Mark J, Elmariah Sammy, Kaneko Tsuyoshi, Daniels David V, Makkar Rajendra R, Chikermane Soumya G, Thompson Christin, Benuzillo Jose, Clancy Seth, Pawlikowski Amber, Lawrence Skye, Luck Jeff

机构信息

Division of Cardiac Surgery, Division of Structural Heart Disease, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.

Division of Cardiology, Department of Medicine, University of California San Francisco, California, USA.

出版信息

JACC Adv. 2024 Jul 16;3(8):101116. doi: 10.1016/j.jacadv.2024.101116. eCollection 2024 Aug.

Abstract

BACKGROUND

Transcatheter aortic valve replacement (TAVR) is an important treatment option for patients with severe symptomatic aortic stenosis. It is important to identify predictors of excellent outcomes (good clinical outcomes, more time spent at home) after TAVR that are potentially amenable to improvement.

OBJECTIVES

The purpose of the study was to use machine learning to identify potentially modifiable predictors of clinically relevant patient-centered outcomes after TAVR.

METHODS

We used data from 8,332 TAVR cases (January 2016-December 2021) from 21 hospitals to train random forest models with 57 patient characteristics (demographics, comorbidities, surgical risk score, lab values, health status scores) and care process parameters to predict the end point, a composite of parameters that designated an excellent outcome and included no major complications (in-hospital or at 30 days), post-TAVR length of stay of 1 day or less, discharge to home, no readmission, and alive at 30 days. We used recursive feature elimination with cross-validation and Shapley Additive Explanation feature importance to identify parameters with the highest predictive values.

RESULTS

The final random forest model retained 29 predictors (15 patient characteristics and 14 care process components); the area under the curve, sensitivity, and specificity were 0.77, 0.67, and 0.73, respectively. Four potentially modifiable predictors with relatively high Shapley Additive Explanation values were identified: type of anesthesia, direct movement to stepdown unit post-TAVR, time between catheterization and TAVR, and preprocedural length of stay.

CONCLUSIONS

This study identified four potentially modifiable predictors of excellent outcome after TAVR, suggesting that machine learning combined with hospital-level data can inform modifiable components of care, which could support better delivery of care for patients undergoing TAVR.

摘要

背景

经导管主动脉瓣置换术(TAVR)是重度症状性主动脉瓣狭窄患者的重要治疗选择。识别TAVR术后优异结局(良好的临床结局、更多在家时间)的预测因素很重要,这些因素可能易于改善。

目的

本研究的目的是使用机器学习来识别TAVR术后以患者为中心的临床相关结局的潜在可改变预测因素。

方法

我们使用了来自21家医院的8332例TAVR病例(2016年1月至2021年12月)的数据,以57项患者特征(人口统计学、合并症、手术风险评分、实验室值、健康状况评分)和护理过程参数训练随机森林模型,以预测终点,该终点是一组指定优异结局的参数组合,包括无重大并发症(住院期间或30天内)、TAVR术后住院时间为1天或更短、出院回家、无再入院以及30天存活。我们使用带交叉验证的递归特征消除和Shapley加性解释特征重要性来识别具有最高预测值的参数。

结果

最终的随机森林模型保留了29个预测因素(15项患者特征和14个护理过程组成部分);曲线下面积、敏感性和特异性分别为0.77、0.67和0.73。识别出四个具有相对较高Shapley加性解释值的潜在可改变预测因素:麻醉类型、TAVR术后直接转入降级护理单元、导管插入术与TAVR之间的时间以及术前住院时间。

结论

本研究识别出TAVR术后优异结局的四个潜在可改变预测因素,表明机器学习与医院层面的数据相结合可以为护理的可改变组成部分提供信息,这可以支持为接受TAVR的患者提供更好的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dde/11301356/6e8d03013787/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验