Suppr超能文献

评估儿科重症监护病房喂养干预措施的相对有效性:纵向靶向最大似然估计的实证研究

Estimating the Comparative Effectiveness of Feeding Interventions in the Pediatric Intensive Care Unit: A Demonstration of Longitudinal Targeted Maximum Likelihood Estimation.

作者信息

Kreif Noémi, Tran Linh, Grieve Richard, De Stavola Bianca, Tasker Robert C, Petersen Maya

机构信息

Centre for Health Economics, University of York, York, United Kingdom.

Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California.

出版信息

Am J Epidemiol. 2017 Dec 15;186(12):1370-1379. doi: 10.1093/aje/kwx213.

Abstract

Longitudinal data sources offer new opportunities for the evaluation of sequential interventions. To adjust for time-dependent confounding in these settings, longitudinal targeted maximum likelihood based estimation (TMLE), a doubly robust method that can be coupled with machine learning, has been proposed. This paper provides a tutorial in applying longitudinal TMLE, in contrast to inverse probability of treatment weighting and g-computation based on iterative conditional expectations. We apply these methods to estimate the causal effect of nutritional interventions on clinical outcomes among critically ill children in a United Kingdom study (Control of Hyperglycemia in Paediatric Intensive Care, 2008-2011). We estimate the probability of a child's being discharged alive from the pediatric intensive care unit by a given day, under a range of static and dynamic feeding regimes. We find that before adjustment, patients who follow the static regime "never feed" are discharged by the end of the fifth day with a probability of 0.88 (95% confidence interval: 0.87, 0.90), while for the patients who follow the regime "feed from day 3," the probability of discharge is 0.64 (95% confidence interval: 0.62, 0.66). After adjustment for time-dependent confounding, most of this difference disappears, and the statistical methods produce similar results. TMLE offers a flexible estimation approach; hence, we provide practical guidance on implementation to encourage its wider use.

摘要

纵向数据源为评估序贯干预措施提供了新的机会。为了在这些情况下调整随时间变化的混杂因素,人们提出了基于纵向靶向最大似然估计(TMLE)的方法,这是一种可以与机器学习相结合的双重稳健方法。与基于迭代条件期望的治疗权重逆概率法和g计算法不同,本文提供了应用纵向TMLE的教程。在一项英国研究(2008 - 2011年儿科重症监护中的高血糖控制)中,我们应用这些方法来估计营养干预对重症儿童临床结局的因果效应。我们估计了在一系列静态和动态喂养方案下,儿童在特定日期前从儿科重症监护病房存活出院的概率。我们发现,在进行调整之前,遵循“从不喂食”静态方案的患者在第五天结束时出院的概率为0.88(95%置信区间:0.87,0.90),而对于遵循“从第3天开始喂食”方案的患者,出院概率为0.64(95%置信区间:0.62,0.66)。在对随时间变化的混杂因素进行调整后,这种差异大部分消失,并且这些统计方法产生了相似的结果。TMLE提供了一种灵活的估计方法;因此,我们提供了关于实施的实用指南,以鼓励其更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd6e/5860499/e665bbdf9d49/kwx213f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验