Department of Biosciences, JIS University, Kolkata, India.
Department of Biosciences, JIS University, Kolkata, India.
Microb Pathog. 2024 Sep;194:106842. doi: 10.1016/j.micpath.2024.106842. Epub 2024 Aug 6.
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
ESKAPE 病原体是一个臭名昭著的联合体,包括屎肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和肠杆菌属,由于其多药耐药性,它们在医疗保健环境中构成了巨大的挑战。全球越来越多的抗微生物耐药性 ESKAPE 病原体病例与它们形成生物膜的非凡能力密切相关。因此,了解 ESKAPE 病原体抗微生物耐药的独特机制和生物膜对传统抗微生物剂的固有弹性对于开发创新策略以建立有效的控制方法非常重要。
本综述对生物膜动力学进行了全面分析,重点介绍了生物膜形成的一般机制、持久细胞在耐药机制中的重要贡献以及与浮游细胞相比生物膜的复发。此外,本综述还强调了纳米颗粒在管理 ESKAPE 病原体生物膜方面的潜在策略。纳米颗粒具有独特的物理化学性质,为破坏生物膜结构和提高抗微生物效果提供了有希望的机会。
本综述探讨了纳米颗粒与生物膜之间的相互作用,涵盖了各种纳米颗粒类型,如金属、金属氧化物、表面改性和功能化纳米颗粒以及有机纳米颗粒和纳米材料。本综述的另一个重点还包括涉及植物提取物和细菌和真菌培养物上清液作为还原剂的纳米颗粒的绿色合成技术。此外,还讨论了纳米复合材料和纳米乳液在 ESKAPE 生物膜管理中的应用。
总之,本综述解决了基于纳米颗粒的生物膜管理中的当前障碍和未来展望,强调了进一步研究和开发的必要性,以充分利用纳米颗粒在解决与生物膜相关的挑战方面的潜力。