College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China.
PLoS One. 2023 Apr 13;18(4):e0284293. doi: 10.1371/journal.pone.0284293. eCollection 2023.
Rapid economic development has led to increasingly serious air quality problems. Accurate air quality prediction can provide technical support for air pollution prevention and treatment. In this paper, we proposed a novel encoder-decoder model named as Enhanced Autoformer (EnAutoformer) to improve the air quality index (AQI) prediction. In this model, (a) The enhanced cross-correlation (ECC) is proposed for extracting the temporal dependencies in AQI time series; (b) Combining the ECC with the cross-stage feature fusion mechanism of CSPDenseNet, the core module CSP_ECC is proposed for improving the computational efficiency of the EnAutoformer. (c) The time series decomposition and dilated causal convolution added in the decoder module are exploited to extract the finer-grained features from the original AQI data and improve the performance of the proposed model for long-term prediction. The real-world air quality datasets collected from Lanzhou are used to validate the performance of our prediction model. The experimental results show that our EnAutoformer model can greatly improve the prediction accuracy compared to the baselines and can be used as a promising alternative for complex air quality prediction.
快速的经济发展导致了空气质量问题日益严重。准确的空气质量预测可以为空气污染的防治提供技术支持。在本文中,我们提出了一种名为增强型 Autoformer (EnAutoformer)的新型编解码器模型,以提高空气质量指数 (AQI) 的预测精度。在该模型中:(a) 提出了增强型互相关 (ECC) 来提取 AQI 时间序列中的时间依赖性;(b) 将 ECC 与 CSPDenseNet 的跨阶段特征融合机制相结合,提出了核心模块 CSP_ECC,以提高 EnAutoformer 的计算效率;(c) 在解码器模块中添加了时间序列分解和扩张因果卷积,从原始 AQI 数据中提取更细粒度的特征,提高了模型对长期预测的性能。我们使用从兰州收集的真实空气质量数据集来验证我们的预测模型的性能。实验结果表明,与基线相比,我们的 EnAutoformer 模型可以大大提高预测精度,可作为复杂空气质量预测的一种有前途的选择。