Suppr超能文献

氨氯地平治疗住院患者高血压短期疗效的真实世界研究

A Real-World Study on the Short-Term Efficacy of Amlodipine in Treating Hypertension Among Inpatients.

作者信息

Wang Tingting, Tan Juntao, Wang Tiantian, Xiang Shoushu, Zhang Yang, Jian Chang, Jian Jie, Zhao Wenlong

机构信息

College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, People's Republic of China.

Operation Management Office, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, 401320, People's Republic of China.

出版信息

Pragmat Obs Res. 2024 Aug 6;15:121-137. doi: 10.2147/POR.S464439. eCollection 2024.

Abstract

PURPOSE

Hospitalized hypertensive patients rely on blood pressure medication, yet there is limited research on the sole use of amlodipine, despite its proven efficacy in protecting target organs and reducing mortality. This study aims to identify key indicators influencing the efficacy of amlodipine, thereby enhancing treatment outcomes.

PATIENTS AND METHODS

In this multicenter retrospective study, 870 hospitalized patients with primary hypertension exclusively received amlodipine for the first 5 days after admission, and their medical records contained comprehensive blood pressure records. They were categorized into success (n=479) and failure (n=391) groups based on average blood pressure control efficacy. Predictive models were constructed using six machine learning algorithms. Evaluation metrics encompassed the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). SHapley Additive exPlanations (SHAP) analysis assessed feature contributions to efficacy.

RESULTS

All six machine learning models demonstrated superior predictive performance. Following variable reduction, the model predicting amlodipine efficacy was reconstructed using these algorithms, with the light gradient boosting machine (LightGBM) model achieving the highest overall performance (AUC = 0.803). Notably, amlodipine showed enhanced efficacy in patients with low platelet distribution width (PDW) values, as well as high hematocrit (HCT) and thrombin time (TT) values.

CONCLUSION

This study utilized machine learning to predict amlodipine's effectiveness in hypertension treatment, pinpointing key factors: HCT, PDW, and TT levels. Lower PDW, along with higher HCT and TT, correlated with enhanced treatment outcomes. This facilitates personalized treatment, particularly for hospitalized hypertensive patients undergoing amlodipine monotherapy.

摘要

目的

住院高血压患者依赖血压药物治疗,然而,尽管氨氯地平在保护靶器官和降低死亡率方面已证实具有疗效,但关于其单独使用的研究却很有限。本研究旨在确定影响氨氯地平疗效的关键指标,从而提高治疗效果。

患者与方法

在这项多中心回顾性研究中,870例住院原发性高血压患者在入院后的前5天仅接受氨氯地平治疗,其病历包含全面的血压记录。根据平均血压控制效果,将他们分为成功组(n = 479)和失败组(n = 391)。使用六种机器学习算法构建预测模型。评估指标包括曲线下面积(AUC)、准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。SHapley 加性解释(SHAP)分析评估了各特征对疗效的贡献。

结果

所有六种机器学习模型均表现出卓越的预测性能。经过变量约简后,使用这些算法重建了预测氨氯地平疗效的模型,其中轻梯度提升机(LightGBM)模型的整体性能最高(AUC = 0.803)。值得注意的是,氨氯地平在血小板分布宽度(PDW)值较低以及血细胞比容(HCT)和凝血酶时间(TT)值较高的患者中显示出更高的疗效。

结论

本研究利用机器学习预测氨氯地平在高血压治疗中的有效性,确定了关键因素:HCT、PDW和TT水平。较低的PDW以及较高的HCT和TT与更好的治疗效果相关。这有助于实现个性化治疗,特别是对于接受氨氯地平单药治疗的住院高血压患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc52/11316486/492421a34f58/POR-15-121-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验