Suppr超能文献

学习用于滚动机器人的跟踪控制器。

Learning a Tracking Controller for Rolling bots.

作者信息

Beaver Logan E, Sokolich Max, Alsalehi Suhail, Weiss Ron, Das Sambeeta, Belta Calin

机构信息

Division of Systems Engineering, Boston University, Boston, MA 02215, USA.

Department of Mechanical Engineering, University of Delaware, Newark, DE 29716, USA.

出版信息

IEEE Robot Autom Lett. 2024 Feb;9(2):1819-1826. doi: 10.1109/LRA.2024.3350968. Epub 2024 Jan 8.

Abstract

Micron-scale robots (bots) have recently shown great promise for emerging medical applications. Accurate control of bots, while critical to their successful deployment, is challenging. In this work, we consider the problem of tracking a reference trajectory using a bot in the presence of disturbances and uncertainty. The disturbances primarily come from Brownian motion and other environmental phenomena, while the uncertainty originates from errors in the model parameters. We model the bot as an uncertain unicycle that is controlled by a global magnetic field. To compensate for disturbances and uncertainties, we develop a nonlinear mismatch controller. We define the as the difference between our model's predicted velocity and the actual velocity of the bot. We employ a Gaussian Process to learn the model mismatch error as a function of the applied control input. Then we use a least-squares minimization to select a control action that minimizes the difference between the actual velocity of the bot and a reference velocity. We demonstrate the online performance of our joint learning and control algorithm in simulation, where our approach accurately learns the model mismatch and improves tracking performance. We also validate our approach in an experiment and show that certain error metrics are reduced by up to 40%.

摘要

微米级机器人(bots)最近在新兴医疗应用中展现出了巨大的潜力。对机器人进行精确控制虽然对其成功部署至关重要,但却具有挑战性。在这项工作中,我们考虑了在存在干扰和不确定性的情况下,使用机器人跟踪参考轨迹的问题。干扰主要来自布朗运动和其他环境现象,而不确定性则源于模型参数的误差。我们将机器人建模为一个由全局磁场控制的不确定独轮车。为了补偿干扰和不确定性,我们开发了一种非线性失配控制器。我们将 定义为模型预测速度与机器人实际速度之间的差值。我们采用高斯过程来学习模型失配误差作为应用控制输入的函数。然后我们使用最小二乘法最小化来选择一种控制动作,使机器人的实际速度与参考速度之间的差值最小。我们在仿真中展示了联合学习和控制算法的在线性能,我们的方法在仿真中准确地学习了模型失配并提高了跟踪性能。我们还在实验中验证了我们的方法,并表明某些误差指标降低了高达40%。

相似文献

1
Learning a Tracking Controller for Rolling bots.学习用于滚动机器人的跟踪控制器。
IEEE Robot Autom Lett. 2024 Feb;9(2):1819-1826. doi: 10.1109/LRA.2024.3350968. Epub 2024 Jan 8.

本文引用的文献

2
Cellular Manipulation Using Rolling Microrobots.使用滚动微型机器人进行细胞操作。
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870486. Epub 2022 Sep 2.
3
A First-Order Approach to Model Simultaneous Control of Multiple Microrobots.一种用于对多个微型机器人进行同步控制建模的一阶方法。
Int Conf Manip Autom Robot Small Scales. 2022 Jul;2022. doi: 10.1109/marss55884.2022.9870476. Epub 2022 Sep 2.
4
Vision-Based Automated Control of Magnetic Microrobots.基于视觉的磁性微型机器人自动控制
Micromachines (Basel). 2022 Feb 21;13(2):337. doi: 10.3390/mi13020337.
5
Reinforcement learning with artificial microswimmers.人工微游泳者的强化学习。
Sci Robot. 2021 Mar 24;6(52). doi: 10.1126/scirobotics.abd9285.
7
Biomedical Applications of Untethered Mobile Milli/Microrobots.无束缚移动毫/微型机器人的生物医学应用
Proc IEEE Inst Electr Electron Eng. 2015 Feb;103(2):205-224. doi: 10.1109/JPROC.2014.2385105. Epub 2015 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验