Suppr超能文献

基于人工智能的CT心脏衰减扫描定量六组织身体成分分析可增强死亡风险预测:多中心研究

AI-based volumetric six-tissue body composition quantification from CT cardiac attenuation scans enhances mortality prediction: multicenter study.

作者信息

Yi Jirong, Michalowska Anna M, Shanbhag Aakash, Miller Robert J H, Geers Jolien, Zhang Wenhao, Killekar Aditya, Manral Nipun, Lemley Mark, Buchwald Mikolaj, Kwiecinski Jacek, Zhou Jianhang, Kavanagh Paul B, Liang Joanna X, Builoff Valerie, Ruddy Terrence D, Einstein Andrew J, Feher Attila, Miller Edward J, Sinusas Albert J, Berman Daniel S, Dey Damini, Slomka Piotr J

机构信息

Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Center of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland.

出版信息

medRxiv. 2024 Aug 1:2024.07.30.24311224. doi: 10.1101/2024.07.30.24311224.

Abstract

BACKGROUND

Computed tomography attenuation correction (CTAC) scans are routinely obtained during cardiac perfusion imaging, but currently only utilized for attenuation correction and visual calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to obtain volumetric measurements of chest body composition from CTAC scans and evaluate these measures for all-cause mortality (ACM) risk stratification.

METHODS

We applied AI-based segmentation and image-processing techniques on CTAC scans from a large international image-based registry (four sites), to define chest rib cage and multiple tissues. Volumetric measures of bone, skeletal muscle (SM), subcutaneous, intramuscular (IMAT), visceral (VAT), and epicardial (EAT) adipose tissues were quantified between automatically-identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation, and indexed volumes were evaluated for predicting ACM, adjusting for established risk factors and 18 other body compositions measures via Cox regression models and Kaplan-Meier curves.

FINDINGS

End-to-end processing time was <2 minutes/scan with no user interaction. Of 9918 patients studied, 5451(55%) were male. During median 2.5 years follow-up, 610 (6.2%) patients died. High VAT, EAT and IMAT attenuation were associated with increased ACM risk (adjusted hazard ratio (HR) [95% confidence interval] for VAT: 2.39 [1.92, 2.96], p<0.0001; EAT: 1.55 [1.26, 1.90], p<0.0001; IMAT: 1.30 [1.06, 1.60], p=0.0124). Patients with high bone attenuation were at lower risk of death as compared to subjects with lower bone attenuation (adjusted HR 0.77 [0.62, 0.95], p=0.0159). Likewise, high SM volume index was associated with a lower risk of death (adjusted HR 0.56 [0.44, 0.71], p<0.0001).

INTERPRETATIONS

CTAC scans obtained routinely during cardiac perfusion imaging contain important volumetric body composition biomarkers which can be automatically measured and offer important additional prognostic value.

摘要

背景

在心脏灌注成像过程中通常会进行计算机断层扫描衰减校正(CTAC)扫描,但目前仅用于衰减校正和视觉钙估计。我们旨在开发一种基于人工智能(AI)的新方法,从CTAC扫描中获取胸部身体成分的体积测量值,并评估这些测量值用于全因死亡率(ACM)风险分层的情况。

方法

我们对来自一个大型国际图像注册库(四个站点)的CTAC扫描应用基于AI的分割和图像处理技术,以定义胸部肋骨笼和多种组织。在自动识别的T5和T11椎体之间对骨、骨骼肌(SM)、皮下、肌内(IMAT)、内脏(VAT)和心外膜(EAT)脂肪组织的体积测量值进行量化。通过Cox回归模型和Kaplan-Meier曲线,评估体积衰减和指数体积对预测ACM的独立预后价值,并对既定风险因素和其他18种身体成分测量值进行调整。

结果

端到端处理时间<2分钟/扫描,无需用户交互。在研究的9918名患者中,5451名(55%)为男性。在中位2.5年的随访期间,610名(6.2%)患者死亡。高VAT、EAT和IMAT衰减与ACM风险增加相关(VAT的调整后危险比(HR)[95%置信区间]:2.39[1.92,2.96],p<0.0001;EAT:1.55[1.26,1.90],p<0.0001;IMAT:1.30[1.06,1.60],p = 0.0124)。与骨衰减较低的受试者相比,骨衰减高的患者死亡风险较低(调整后HR 0.77[0.62,0.95],p = 0.0159)。同样,高SM体积指数与较低的死亡风险相关(调整后HR 0.56[0.44,0.71],p<0.0001)。

解读

在心脏灌注成像过程中常规获得的CTAC扫描包含重要的体积身体成分生物标志物,这些标志物可以自动测量,并提供重要的额外预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8f/11312626/e266f5571a5e/nihpp-2024.07.30.24311224v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验