Suppr超能文献

重症监护病房中用于加强沟通与研究的人工智能驱动翻译工具

Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research.

作者信息

Bahrami Sahar, Rubulotta Francesca

机构信息

Department of Critical Care Medicine, McGill University Health Centre, Montreal, QC H3A 0G4, Canada.

Department of Critical Care Medicine, University of Catania, 95124 Catania, Italy.

出版信息

Int J Environ Res Public Health. 2025 Jan 12;22(1):95. doi: 10.3390/ijerph22010095.

Abstract

UNLABELLED

There is a need to improve communication for patients and relatives who belong to cultural minority communities in intensive care units (ICUs). As a matter of fact, language barriers negatively impact patient safety and family participation in the care of critically ill patients, as well as recruitment to clinical trials. Recent studies indicate that Google Translate and ChatGPT are not accurate enough for advanced medical terminology. Therefore, developing and implementing an ad hoc machine translation tool is essential for bridging language barriers. This tool would enable language minority communities to access advanced healthcare facilities and innovative research in a timely and effective manner, ensuring they receive the comprehensive care and information they need.

METHOD

Key factors that facilitate access to advanced health services, in particular ICUs, for language minority communities are reviewed.

RESULTS

The existing digital communication tools in emergency departments and ICUs are reviewed. To the best of our knowledge, no AI English/French translation app has been developed for deployment in ICUs. Patient privacy and data confidentiality are other important issues that should be addressed.

CONCLUSIONS

Developing an artificial intelligence-driven translation tool for intensive care units (AITIC) which uses language models trained with medical/ICU terminology datasets could offer fast and accurate real-time translation. An AITIC could support communication, and consolidate and expand original research involving language minority communities.

摘要

未标注

有必要改善重症监护病房(ICU)中属于文化少数群体的患者及其亲属的沟通情况。事实上,语言障碍会对患者安全、家属参与重症患者护理以及临床试验招募产生负面影响。最近的研究表明,谷歌翻译和ChatGPT对于高级医学术语的翻译不够准确。因此,开发并实施一个专门的机器翻译工具对于消除语言障碍至关重要。该工具将使语言少数群体能够及时、有效地获得先进的医疗设施和创新研究成果,确保他们得到所需的全面护理和信息。

方法

回顾了促进语言少数群体获得先进医疗服务,特别是重症监护病房服务的关键因素。

结果

对急诊科和重症监护病房现有的数字通信工具进行了回顾。据我们所知,尚未开发出用于重症监护病房的人工智能英语/法语翻译应用程序。患者隐私和数据保密是其他应解决的重要问题。

结论

开发一种用于重症监护病房的人工智能驱动翻译工具(AITIC),该工具使用经过医学/重症监护病房术语数据集训练的语言模型,可以提供快速准确的实时翻译。AITIC可以支持沟通,并巩固和扩展涉及语言少数群体的原创研究。

相似文献

本文引用的文献

2
ChatGPT in healthcare: A taxonomy and systematic review.ChatGPT 在医疗保健中的应用:分类法与系统综述。
Comput Methods Programs Biomed. 2024 Mar;245:108013. doi: 10.1016/j.cmpb.2024.108013. Epub 2024 Jan 15.
5
Natural Language Processing for Smart Healthcare.自然语言处理在智慧医疗中的应用。
IEEE Rev Biomed Eng. 2024;17:4-18. doi: 10.1109/RBME.2022.3210270. Epub 2024 Jan 12.
6
Natural language processing: state of the art, current trends and challenges.自然语言处理:技术现状、当前趋势与挑战。
Multimed Tools Appl. 2023;82(3):3713-3744. doi: 10.1007/s11042-022-13428-4. Epub 2022 Jul 14.
10
A Pragmatic Assessment of Google Translate for Emergency Department Instructions.Google 翻译在急诊科医嘱中的实用性评估。
J Gen Intern Med. 2021 Nov;36(11):3361-3365. doi: 10.1007/s11606-021-06666-z. Epub 2021 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验