Suppr超能文献

评估一种贝叶斯分层药代动力学-药效学模型,用于预测新型抗疟药物 2 期研究中的寄生虫学结局。

Evaluation of a Bayesian hierarchical pharmacokinetic-pharmacodynamic model for predicting parasitological outcomes in Phase 2 studies of new antimalarial drugs.

机构信息

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.

School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.

出版信息

Antimicrob Agents Chemother. 2024 Sep 4;68(9):e0086324. doi: 10.1128/aac.00863-24. Epub 2024 Aug 13.

Abstract

The rise of multidrug-resistant malaria requires accelerated development of novel antimalarial drugs. Pharmacokinetic-pharmacodynamic (PK-PD) models relate blood antimalarial drug concentrations with the parasite-time profile to inform dosing regimens. We performed a simulation study to assess the utility of a Bayesian hierarchical mechanistic PK-PD model for predicting parasite-time profiles for a Phase 2 study of a new antimalarial drug, cipargamin. We simulated cipargamin concentration- and malaria parasite-profiles based on a Phase 2 study of eight volunteers who received cipargamin 7 days after inoculation with malaria parasites. The cipargamin profiles were generated from a two-compartment PK model and parasite profiles from a previously published biologically informed PD model. One thousand PK-PD data sets of eight patients were simulated, following the sampling intervals of the Phase 2 study. The mechanistic PK-PD model was incorporated in a Bayesian hierarchical framework, and the parameters were estimated. Population PK model parameters describing absorption, distribution, and clearance were estimated with minimal bias (mean relative bias ranged from 1.7% to 8.4%). The PD model was fitted to the parasitaemia profiles in each simulated data set using the estimated PK parameters. Posterior predictive checks demonstrate that our PK-PD model adequately captures the simulated PD profiles. The bias of the estimated population average PD parameters was low-moderate in magnitude. This simulation study demonstrates the viability of our PK-PD model to predict parasitological outcomes in Phase 2 volunteer infection studies. This work will inform the dose-effect relationship of cipargamin, guiding decisions on dosing regimens to be evaluated in Phase 3 trials.

摘要

抗药性疟疾的兴起需要加速开发新的抗疟药物。药代动力学-药效学(PK-PD)模型将血液中抗疟药物浓度与寄生虫时间曲线相关联,以提供给药方案。我们进行了一项模拟研究,以评估贝叶斯分层机制 PK-PD 模型在预测新型抗疟药物 cipargamin Ⅱ期研究中寄生虫时间曲线方面的效用。我们根据 8 名志愿者在接种疟原虫 7 天后接受 cipargamin 的Ⅱ期研究模拟 cipargamin 浓度和疟原虫曲线。cipargamin 曲线来自一个两室 PK 模型,寄生虫曲线来自以前发表的具有生物学意义的 PD 模型。模拟了 8 名患者 1000 个 PK-PD 数据集,采样间隔遵循Ⅱ期研究。机制 PK-PD 模型纳入贝叶斯分层框架,估计参数。描述吸收、分布和清除的群体 PK 模型参数估计具有最小偏差(平均相对偏差范围为 1.7%至 8.4%)。使用估计的 PK 参数,PD 模型拟合每个模拟数据集的寄生虫血症曲线。后验预测检查表明,我们的 PK-PD 模型能够充分捕捉模拟 PD 曲线。估计的群体平均 PD 参数的偏差大小适中。这项模拟研究证明了我们的 PK-PD 模型在预测Ⅱ期志愿者感染研究中的寄生虫病结果方面具有可行性。这项工作将为 cipargamin 的剂量-效应关系提供信息,指导在 3 期试验中评估的给药方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed84/11373224/c681da3866e0/aac.00863-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验