Neuroscience Graduate Program, University of California Davis, Davis, CA, USA.
California National Primate Research Center, University of California Davis, Davis, CA, USA.
Brain Struct Funct. 2024 Nov;229(8):2029-2043. doi: 10.1007/s00429-024-02848-7. Epub 2024 Aug 13.
With increasing numbers of magnetic resonance imaging (MRI) datasets becoming publicly available, researchers and clinicians alike have turned to automated methods of segmentation to enable population-level analyses of these data. Although prior research has evaluated the extent to which automated methods recapitulate "gold standard" manual segmentation methods in the human brain, such an evaluation has not yet been carried out for segmentation of MRIs of the macaque brain. Macaques offer the important opportunity to bridge gaps between microanatomical studies using invasive methods like tract tracing, neural recordings, and high-resolution histology and non-invasive macroanatomical studies using methods like MRI. As such, it is important to evaluate whether automated tools derive data of sufficient quality from macaque MRIs to bridge these gaps. We tested the relationship between automated registration-based segmentation using an open source and actively maintained NHP imaging analysis pipeline (AFNI) and gold standard manual segmentation of 4 structures (2 cortical: anterior cingulate cortex and insula; 2 subcortical: amygdala and caudate) across 37 rhesus macaques (Macaca mulatta). We identified some variability in the strength of correlation between automated and manual segmentations across neural regions and differences in relationships with demographic variables like age and sex between the two techniques.
随着越来越多的磁共振成像 (MRI) 数据集公开可用,研究人员和临床医生都开始转向自动分割方法,以实现对这些数据的人群水平分析。尽管先前的研究已经评估了自动方法在多大程度上再现了人类大脑中“金标准”手动分割方法,但对于猕猴大脑 MRI 的分割,尚未进行此类评估。猕猴为弥合使用侵入性方法(如轨迹追踪、神经记录和高分辨率组织学)进行的微观解剖研究与使用 MRI 等非侵入性宏观解剖研究之间的差距提供了重要机会。因此,评估自动工具是否能够从猕猴 MRI 中获得足够质量的数据来弥合这些差距非常重要。我们测试了使用开源且积极维护的灵长类动物成像分析管道 (AFNI) 的基于自动配准的分割与 4 种结构(2 种皮质:前扣带皮层和岛叶;2 种皮质下:杏仁核和尾状核)的金标准手动分割之间的关系,涉及 37 只恒河猴 (Macaca mulatta)。我们发现,在神经区域中,自动分割和手动分割之间的相关性强度存在一些差异,并且两种技术之间与年龄和性别等人口统计学变量的关系也存在差异。