Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States.
Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States.
Comput Methods Programs Biomed. 2022 Jun;221:106830. doi: 10.1016/j.cmpb.2022.106830. Epub 2022 Apr 22.
Wilson statistics describe well the power spectrum of proteins at high frequencies. Therefore, it has found several applications in structural biology, e.g., it is the basis for sharpening steps used in cryogenic electron microscopy (cryo-EM). A recent paper gave the first rigorous proof of Wilson statistics based on a formalism of Wilson's original argument. This new analysis also leads to statistical estimates of the scattering potential of proteins that reveal a correlation between neighboring Fourier coefficients. Here we exploit these estimates to craft a novel prior that can be used for Bayesian inference of molecular structures.
We describe the properties of the prior and the computation of its hyperparameters. We then evaluate the prior on two synthetic linear inverse problems, and compare against a popular prior in cryo-EM reconstruction at a range of SNRs.
We show that the new prior effectively suppresses noise and fills-in low SNR regions in the spectral domain. Furthermore, it improves the resolution of estimates on the problems considered for a wide range of SNR and produces Fourier Shell Correlation curves that are insensitive to masking effects.
We analyze the assumptions in the model, discuss relations to other regularization strategies, and postulate on potential implications for structure determination in cryo-EM.
Wilson 统计量很好地描述了蛋白质在高频时的功率谱。因此,它在结构生物学中有许多应用,例如,它是用于低温电子显微镜(cryo-EM)中锐化步骤的基础。最近的一篇论文基于 Wilson 原始论证的形式主义,首次对 Wilson 统计量进行了严格证明。这种新的分析方法还对蛋白质散射势进行了统计估计,揭示了相邻傅里叶系数之间的相关性。在这里,我们利用这些估计值来构建一种新的先验方法,可用于分子结构的贝叶斯推断。
我们描述了先验的性质及其超参数的计算方法。然后,我们在两个合成线性反问题上评估了先验,并在一系列 SNR 下与 cryo-EM 重建中的一个流行先验进行了比较。
我们表明,新的先验有效地抑制了噪声并填补了频谱域中 SNR 较低的区域。此外,它在广泛的 SNR 范围内提高了对所考虑问题的估计的分辨率,并产生了对掩蔽效应不敏感的傅里叶壳相关曲线。
我们分析了模型中的假设,讨论了与其他正则化策略的关系,并推测了其对 cryo-EM 中结构确定的潜在影响。