Suppr超能文献

基于威尔逊统计的贝叶斯推理的分子先验分布。

A molecular prior distribution for Bayesian inference based on Wilson statistics.

机构信息

Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States.

Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States.

出版信息

Comput Methods Programs Biomed. 2022 Jun;221:106830. doi: 10.1016/j.cmpb.2022.106830. Epub 2022 Apr 22.

Abstract

BACKGROUND AND OBJECTIVE

Wilson statistics describe well the power spectrum of proteins at high frequencies. Therefore, it has found several applications in structural biology, e.g., it is the basis for sharpening steps used in cryogenic electron microscopy (cryo-EM). A recent paper gave the first rigorous proof of Wilson statistics based on a formalism of Wilson's original argument. This new analysis also leads to statistical estimates of the scattering potential of proteins that reveal a correlation between neighboring Fourier coefficients. Here we exploit these estimates to craft a novel prior that can be used for Bayesian inference of molecular structures.

METHODS

We describe the properties of the prior and the computation of its hyperparameters. We then evaluate the prior on two synthetic linear inverse problems, and compare against a popular prior in cryo-EM reconstruction at a range of SNRs.

RESULTS

We show that the new prior effectively suppresses noise and fills-in low SNR regions in the spectral domain. Furthermore, it improves the resolution of estimates on the problems considered for a wide range of SNR and produces Fourier Shell Correlation curves that are insensitive to masking effects.

CONCLUSIONS

We analyze the assumptions in the model, discuss relations to other regularization strategies, and postulate on potential implications for structure determination in cryo-EM.

摘要

背景与目的

Wilson 统计量很好地描述了蛋白质在高频时的功率谱。因此,它在结构生物学中有许多应用,例如,它是用于低温电子显微镜(cryo-EM)中锐化步骤的基础。最近的一篇论文基于 Wilson 原始论证的形式主义,首次对 Wilson 统计量进行了严格证明。这种新的分析方法还对蛋白质散射势进行了统计估计,揭示了相邻傅里叶系数之间的相关性。在这里,我们利用这些估计值来构建一种新的先验方法,可用于分子结构的贝叶斯推断。

方法

我们描述了先验的性质及其超参数的计算方法。然后,我们在两个合成线性反问题上评估了先验,并在一系列 SNR 下与 cryo-EM 重建中的一个流行先验进行了比较。

结果

我们表明,新的先验有效地抑制了噪声并填补了频谱域中 SNR 较低的区域。此外,它在广泛的 SNR 范围内提高了对所考虑问题的估计的分辨率,并产生了对掩蔽效应不敏感的傅里叶壳相关曲线。

结论

我们分析了模型中的假设,讨论了与其他正则化策略的关系,并推测了其对 cryo-EM 中结构确定的潜在影响。

相似文献

1
A molecular prior distribution for Bayesian inference based on Wilson statistics.基于威尔逊统计的贝叶斯推理的分子先验分布。
Comput Methods Programs Biomed. 2022 Jun;221:106830. doi: 10.1016/j.cmpb.2022.106830. Epub 2022 Apr 22.
3
[Progress in filters for denoising cryo-electron microscopy images].[用于冷冻电子显微镜图像去噪的滤波器研究进展]
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.
4
Refinement of Atomic Structures Against cryo-EM Maps.基于冷冻电镜图谱对原子结构的优化
Methods Enzymol. 2016;579:277-305. doi: 10.1016/bs.mie.2016.05.033. Epub 2016 Jun 24.
8
A Bayesian view on cryo-EM structure determination.贝叶斯视角下的冷冻电镜结构测定。
J Mol Biol. 2012 Jan 13;415(2):406-18. doi: 10.1016/j.jmb.2011.11.010. Epub 2011 Nov 12.
10
Persistent topology for cryo-EM data analysis.用于冷冻电镜数据分析的持久拓扑学。
Int J Numer Method Biomed Eng. 2015 Aug;31(8). doi: 10.1002/cnm.2719. Epub 2015 May 6.

引用本文的文献

1
Efficient high-resolution refinement in cryo-EM with stochastic gradient descent.利用随机梯度下降实现冷冻电镜中的高效高分辨率细化
Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):327-343. doi: 10.1107/S205979832500511X. Epub 2025 Jun 23.

本文引用的文献

1
EMDA: A Python package for Electron Microscopy Data Analysis.EMDA:用于电子显微镜数据分析的 Python 包。
J Struct Biol. 2022 Mar;214(1):107826. doi: 10.1016/j.jsb.2021.107826. Epub 2021 Dec 13.
2
Computational Methods for Single-Particle Electron Cryomicroscopy.单颗粒电子冷冻显微镜的计算方法。
Annu Rev Biomed Data Sci. 2020 Jul;3:163-190. doi: 10.1146/annurev-biodatasci-021020-093826. Epub 2020 May 4.
7
Regularization by Denoising: Clarifications and New Interpretations.通过去噪进行正则化:阐释与新解读
IEEE Trans Comput Imaging. 2019 Mar;5(1):52-67. doi: 10.1109/TCI.2018.2880326. Epub 2018 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验