Suppr超能文献

整合网络药理学和计算生物学以揭示益气散结方治疗非小细胞肺癌的机制:分子对接、ADMET和分子动力学模拟

Integrating network pharmacology and computational biology to propose Yiqi Sanjie formula's mechanisms in treating NSCLC: molecular docking, ADMET, and molecular dynamics simulation.

作者信息

Wang Yunzhen, He Guijuan, Zloh Mire, Shen Tao, He Zhengfu

机构信息

Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

出版信息

Transl Cancer Res. 2024 Jul 31;13(7):3798-3813. doi: 10.21037/tcr-24-972. Epub 2024 Jul 26.

Abstract

BACKGROUND

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths globally. Current treatments often do not fully meet efficacy and quality of life expectations. Traditional Chinese medicine (TCM), particularly the Yiqi Sanjie formula, shows promise but lacks clear mechanistic understanding. This study addresses this gap by investigating the therapeutic effects and underlying mechanisms of Yiqi Sanjie formula in NSCLC.

METHODS

We utilized network pharmacology to identify potential NSCLC drug targets of the Yiqi Sanjie formula via the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Compounds with favorable oral bioavailability and drug-likeness scores were selected. Molecular docking was conducted using AutoDock Vina with structural data from the Protein Data Bank and PubChem. Molecular dynamics (MD) simulations were performed with Desmond Molecular Dynamics System, analyzing interactions up to 500 nanoseconds using the OPLS4 force field. ADMET predictions were executed using SwissADME and ADMETlab 2.0, assessing pharmacokinetic properties.

RESULTS

Using network pharmacology tools, we performed Search Tool for the Retrieval of Interaction Genes/Proteins (STRING) analysis for protein-protein interaction, Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway enrichment, and gene ontology (GO) for functional enrichment, identifying crucial signaling pathways and biological processes influenced by the hit compounds bifendate, xambioona, and hederagenin. STRING analysis indicated substantial connectivity among the targets, suggesting significant interactions within the cell cycle regulation and growth factor signaling pathways as outlined in our KEGG results. The GO analysis highlighted their involvement in critical biological processes such as cell cycle control, apoptosis, and drug response. Molecular docking simulations quantified the binding efficiencies of the identified compounds with their targets-CCND1, CDK4, and EGFR-selected based on high docking scores that suggest strong potential interactions crucial for NSCLC inhibition. Subsequent MD simulations validated the stability of these complexes, supporting their potential as therapeutic interventions. Additionally, the novel identification of ADH1B as a target underscores its prospective significance in NSCLC therapy, further expanded by our comprehensive bioinformatics approach.

CONCLUSIONS

Our research demonstrates the potential of integrating network pharmacology and computational biology to elucidate the mechanisms of the Yiqi Sanjie formula in NSCLC treatment. The identified compounds could lead to novel targeted therapies, especially for patients with overexpressed targets. The discovery of ADH1B as a therapeutic target adds a new dimension to NSCLC treatment strategies. Further studies, both and , are needed to confirm these computational findings and advance these compounds towards clinical trials.

摘要

背景

非小细胞肺癌(NSCLC)仍是全球癌症相关死亡的主要原因。目前的治疗方法往往不能完全满足疗效和生活质量期望。中药,特别是益气散结方,显示出一定前景,但缺乏清晰的作用机制认识。本研究通过调查益气散结方在NSCLC中的治疗效果和潜在机制来填补这一空白。

方法

我们利用网络药理学,通过中药系统药理学(TCMSP)数据库确定益气散结方潜在的NSCLC药物靶点。选择具有良好口服生物利用度和类药性质评分的化合物。使用AutoDock Vina进行分子对接,其结构数据来自蛋白质数据库和PubChem。使用Desmond分子动力学系统进行分子动力学(MD)模拟,使用OPLS4力场分析长达500纳秒的相互作用。使用SwissADME和ADMETlab 2.0进行ADMET预测,评估药代动力学性质。

结果

使用网络药理学工具,我们进行了检索相互作用基因/蛋白质的搜索工具(STRING)分析以进行蛋白质 - 蛋白质相互作用,京都基因与基因组百科全书(KEGG)进行通路富集,基因本体论(GO)进行功能富集,确定了受命中化合物联苯双酯、绞股蓝总苷和羽扇豆醇影响的关键信号通路和生物学过程。STRING分析表明靶点之间存在大量连接,这表明在我们的KEGG结果中所概述的细胞周期调控和生长因子信号通路内存在显著相互作用。GO分析突出了它们参与诸如细胞周期控制、细胞凋亡和药物反应等关键生物学过程。分子对接模拟量化了所鉴定化合物与其基于高对接分数选择的靶点CCND1、CDK4和EGFR的结合效率,这些高对接分数表明对NSCLC抑制至关重要的强潜在相互作用。随后的MD模拟验证了这些复合物的稳定性,支持它们作为治疗干预措施的潜力。此外,将ADH1B鉴定为靶点凸显了其在NSCLC治疗中的潜在重要性,我们全面的生物信息学方法进一步扩展了这一点。

结论

我们的研究证明了整合网络药理学和计算生物学以阐明益气散结方在NSCLC治疗中机制的潜力。所鉴定化合物可能会带来新的靶向治疗方法,特别是对于靶点过表达的患者。将ADH1B发现为治疗靶点为NSCLC治疗策略增添了新的维度。需要进一步的体内和体外研究来证实这些计算结果,并推动这些化合物进入临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b1/11319956/594cdd1998de/tcr-13-07-3798-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验