Suppr超能文献

使用高斯运动学公式的函数型数据的同时置信带

Simultaneous confidence bands for functional data using the Gaussian Kinematic formula.

作者信息

Telschow Fabian J E, Schwartzman Armin

机构信息

Institute of Mathematics, Humboldt-Universität zu Berlin, Germany.

Division of Biostatistics, University of California, San Diego, USA.

出版信息

J Stat Plan Inference. 2022 Jan;216:70-94. doi: 10.1016/j.jspi.2021.05.008. Epub 2021 Jun 5.

Abstract

We propose a construction of simultaneous confidence bands (SCBs) for functional parameters over arbitrary dimensional compact domains using the Gaussian Kinematic formula of -processes (tGKF). Although the tGKF relies on Gaussianity, we show that a central limit theorem (CLT) for the parameter of interest is enough to obtain asymptotically precise covering even if the observations are non-Gaussian processes. As a proof of concept we study the functional signal-plus-noise model and derive a CLT for an estimator of the Lipshitz-Killing curvatures, the only data-dependent quantities in the tGKF. We further discuss extensions to discrete sampling with additive observation noise using scale space ideas from regression analysis. Our theoretical work is accompanied by a simulation study comparing different methods to construct SCBs for the population mean. We show that the tGKF outperforms state-of-the-art methods with precise covering for small sample sizes, and only a Rademacher multiplier- bootstrap performs similarly well. A further benefit is that our SCBs are computational fast even for domains of dimension greater than one. Applications of SCBs to diffusion tensor imaging (DTI) fibers (1D) and spatio-temporal temperature data (2D) are discussed.

摘要

我们提出了一种利用 - 过程的高斯运动学公式(tGKF)在任意维紧致域上构建功能参数的同时置信带(SCB)的方法。尽管tGKF依赖于高斯性,但我们表明,即使观测值是非高斯过程,对于感兴趣参数的中心极限定理(CLT)也足以获得渐近精确的覆盖范围。作为概念验证,我们研究了功能信号加噪声模型,并为Lipshitz - Killing曲率的估计量推导了一个CLT,Lipshitz - Killing曲率是tGKF中唯一依赖于数据的量。我们进一步讨论了使用回归分析中的尺度空间思想将其扩展到具有加性观测噪声的离散采样。我们的理论工作伴随着一项模拟研究,该研究比较了构建总体均值的SCB的不同方法。我们表明,tGKF在小样本量时具有精确覆盖的情况下优于现有方法,并且只有拉德马赫乘数自举法表现得同样出色。另一个好处是,即使对于维度大于一的域,我们的SCB计算速度也很快。讨论了SCB在扩散张量成像(DTI)纤维(一维)和时空温度数据(二维)中的应用。

相似文献

4
Fast Univariate Inference for Longitudinal Functional Models.纵向功能模型的快速单变量推断
J Comput Graph Stat. 2022;31(1):219-230. doi: 10.1080/10618600.2021.1950006. Epub 2021 Aug 4.

引用本文的文献

本文引用的文献

4
Abnormal white matter properties in adolescent girls with anorexia nervosa.神经性厌食症少女的白质特性异常。
Neuroimage Clin. 2015 Oct 23;9:648-59. doi: 10.1016/j.nicl.2015.10.008. eCollection 2015.
5
Simultaneous Inference For The Mean Function Based on Dense Functional Data.基于密集函数型数据的均值函数的同时推断
J Nonparametr Stat. 2012 Jun 1;24(2):359-377. doi: 10.1080/10485252.2011.638071. Epub 2012 Apr 30.
7
Unified univariate and multivariate random field theory.统一的单变量和多变量随机场理论。
Neuroimage. 2004;23 Suppl 1:S189-95. doi: 10.1016/j.neuroimage.2004.07.026.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验