Telschow Fabian J E, Schwartzman Armin
Institute of Mathematics, Humboldt-Universität zu Berlin, Germany.
Division of Biostatistics, University of California, San Diego, USA.
J Stat Plan Inference. 2022 Jan;216:70-94. doi: 10.1016/j.jspi.2021.05.008. Epub 2021 Jun 5.
We propose a construction of simultaneous confidence bands (SCBs) for functional parameters over arbitrary dimensional compact domains using the Gaussian Kinematic formula of -processes (tGKF). Although the tGKF relies on Gaussianity, we show that a central limit theorem (CLT) for the parameter of interest is enough to obtain asymptotically precise covering even if the observations are non-Gaussian processes. As a proof of concept we study the functional signal-plus-noise model and derive a CLT for an estimator of the Lipshitz-Killing curvatures, the only data-dependent quantities in the tGKF. We further discuss extensions to discrete sampling with additive observation noise using scale space ideas from regression analysis. Our theoretical work is accompanied by a simulation study comparing different methods to construct SCBs for the population mean. We show that the tGKF outperforms state-of-the-art methods with precise covering for small sample sizes, and only a Rademacher multiplier- bootstrap performs similarly well. A further benefit is that our SCBs are computational fast even for domains of dimension greater than one. Applications of SCBs to diffusion tensor imaging (DTI) fibers (1D) and spatio-temporal temperature data (2D) are discussed.
我们提出了一种利用 - 过程的高斯运动学公式(tGKF)在任意维紧致域上构建功能参数的同时置信带(SCB)的方法。尽管tGKF依赖于高斯性,但我们表明,即使观测值是非高斯过程,对于感兴趣参数的中心极限定理(CLT)也足以获得渐近精确的覆盖范围。作为概念验证,我们研究了功能信号加噪声模型,并为Lipshitz - Killing曲率的估计量推导了一个CLT,Lipshitz - Killing曲率是tGKF中唯一依赖于数据的量。我们进一步讨论了使用回归分析中的尺度空间思想将其扩展到具有加性观测噪声的离散采样。我们的理论工作伴随着一项模拟研究,该研究比较了构建总体均值的SCB的不同方法。我们表明,tGKF在小样本量时具有精确覆盖的情况下优于现有方法,并且只有拉德马赫乘数自举法表现得同样出色。另一个好处是,即使对于维度大于一的域,我们的SCB计算速度也很快。讨论了SCB在扩散张量成像(DTI)纤维(一维)和时空温度数据(二维)中的应用。