Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, United States.
Department of Psychology, Stanford University, Stanford, United States.
Elife. 2024 Aug 15;13:RP97107. doi: 10.7554/eLife.97107.
Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.
现代神经生理学记录使用多通道传感器阵列进行,这些传感器阵列能够以越来越高的数量记录活动,数量从 100 到 1000 不等。通常,底层的低维活动模式是观察到的动态的原因,但这些表示形式很难使用现有的方法可靠地识别,这些方法试图从单变量分析或使用当前的盲源分离方法事后总结多变量关系。虽然这些方法可以揭示吸引人的活动模式,但确定要包括的组件数量、评估其统计意义以及解释它们在实践中需要大量的手动干预和主观判断。组件选择和解释的这些困难在很大程度上是因为这些方法缺乏潜在时空动态的生成模型。在这里,我们描述了一种新颖的基于生成模型的组件分析方法,其中每个源都由一个受生物物理启发的状态空间表示来描述。控制这种表示的参数可以很容易地捕捉到组件的振荡时间动态,因此我们将其称为振荡组件分析。这些参数 - 振荡特性、传感器处的组件混合权重以及振荡次数 - 都在贝叶斯框架内以数据驱动的方式通过使用期望最大化算法的实例进行推断。我们分析了来自人类研究的高维脑电图和脑磁图记录,以说明该方法对神经科学数据的潜在应用。