Suppr超能文献

BiPAP 通气时 CO 重复呼吸的自动检测。

Automatic detection of CO rebreathing during BiPAP ventilation.

机构信息

Department of Anesthesiology and Intensive Care, Antoni Jurasz University Hospital nr 1, Ul. Sklodowskiej Curie 9, 85-094, Bydgoszcz, Poland.

Medical Intensive Care, Pavillon N, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon-Nord Medical School, University Claude Bernard Lyon I, 5 Place d'Arsonval, 69003, Lyon, France.

出版信息

Sci Rep. 2024 Aug 17;14(1):19066. doi: 10.1038/s41598-024-63609-4.

Abstract

Carbon dioxide rebreathing (CO rebreathing) significantly influences respiratory drive and the work of breathing during BiPAP ventilation. We analyzed CO movement during BiPAP ventilation to find a method of real time detection of CO rebreathing without the need of CO concentration measurement sampled from the circuit (method expensive and not routinely used). Observational study during routine care in 15 bed university hospital ICU. At 18 patients who required BiPAP ventilation, intubated or during noninvasive ventilation, during weaning period airflow, pressure and CO concentration signals were registered on both sides of venting port and 17 respiratory parameters were measured or calculated for each of 4747 respiratory cycles analyzed. Based on CO movement (expiration-inspiration sequences) 3 types of cycle were identified, type I and II do not induce rebreathing but type III does. To test differences between the 3 types ANOVA, t-tests, and canonical discriminant analysis (CDA) were used. Then a multilayer perceptron (MLP) network, a type of artificial neural network, using the above parameters (excluding CO concentration) was applied to automatically identify the three types of respiratory cycles. Of the 4747 respiratory cycles, 1849 were type I, 1545 type II, and 1353 type III. ANOVA and t-tests showed significant differences between the types of respiratory cycles. CDA confirmed a correct apportionment of 93.9% of the cycles; notably, of 97.9% of type III. MLP automatically classified the respiratory cycles into the three types with 98.8% accuracy. Three types of respiratory cycles could be distinguished based on CO movement during BiPAP ventilation. Artificial neural networks can be used to automatically detect respiratory cycle type III, the only inducing CO rebreathing.

摘要

二氧化碳重吸入(CO 重吸入)在 BiPAP 通气期间显著影响呼吸驱动和呼吸功。我们分析了 BiPAP 通气期间 CO 的运动,以找到一种无需从回路中测量 CO 浓度(方法昂贵且不常规使用)即可实时检测 CO 重吸入的方法。在大学医院 ICU 的常规护理期间进行观察性研究。在需要 BiPAP 通气、插管或无创通气的 18 名患者中,在通气口的两侧记录气流、压力和 CO 浓度信号,并对分析的 4747 个呼吸周期中的每一个测量或计算 17 个呼吸参数。基于 CO 的运动(呼气-吸气序列),确定了 3 种类型的呼吸周期,I 型和 II 型不会引起重吸入,但 III 型会。为了检验 3 种类型之间的差异,使用了方差分析(ANOVA)、t 检验和典型判别分析(CDA)。然后,使用多层感知器(MLP)网络,一种人工神经网络,使用上述参数(不包括 CO 浓度),自动识别 3 种类型的呼吸周期。在 4747 个呼吸周期中,1849 个为 I 型,1545 个为 II 型,1353 个为 III 型。ANOVA 和 t 检验显示呼吸周期类型之间存在显著差异。CDA 证实了 93.9%的周期分配正确;值得注意的是,97.9%的 III 型正确。MLP 自动将呼吸周期分为 3 种类型,准确率为 98.8%。基于 BiPAP 通气期间 CO 的运动,可以区分 3 种类型的呼吸周期。人工神经网络可用于自动检测仅诱导 CO 重吸入的呼吸周期 III 型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/809d/11330465/7f6613163004/41598_2024_63609_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验