ETH Zürich, Department of Computer Science, Rämistrasse 101, 8092, Zürich, Switzerland.
Department of Math and Computer Science, Weizmann Institute of Science, Rehovot, Israel.
Eur Radiol. 2021 Dec;31(12):9654-9663. doi: 10.1007/s00330-021-08050-1. Epub 2021 May 29.
In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in diagnosis and monitoring of patients with COVID-19. We propose a deep learning model for detection of COVID-19 from CXRs, as well as a tool for retrieving similar patients according to the model's results on their CXRs. For training and evaluating our model, we collected CXRs from inpatients hospitalized in four different hospitals.
In this retrospective study, 1384 frontal CXRs, of COVID-19 confirmed patients imaged between March and August 2020, and 1024 matching CXRs of non-COVID patients imaged before the pandemic, were collected and used to build a deep learning classifier for detecting patients positive for COVID-19. The classifier consists of an ensemble of pre-trained deep neural networks (DNNS), specifically, ReNet34, ReNet50¸ ReNet152, and vgg16, and is enhanced by data augmentation and lung segmentation. We further implemented a nearest-neighbors algorithm that uses DNN-based image embeddings to retrieve the images most similar to a given image.
Our model achieved accuracy of 90.3%, (95% CI: 86.3-93.7%) specificity of 90% (95% CI: 84.3-94%), and sensitivity of 90.5% (95% CI: 85-94%) on a test dataset comprising 15% (350/2326) of the original images. The AUC of the ROC curve is 0.96 (95% CI: 0.93-0.97).
We provide deep learning models, trained and evaluated on CXRs that can assist medical efforts and reduce medical staff workload in handling COVID-19.
• A machine learning model was able to detect chest X-ray (CXR) images of patients tested positive for COVID-19 with accuracy and detection rate above 90%. • A tool was created for finding existing CXR images with imaging characteristics most similar to a given CXR, according to the model's image embeddings.
在 2019 冠状病毒病(COVID-19)疫情期间,胸部 X 线(CXR)成像在 COVID-19 患者的诊断和监测中发挥着重要作用。我们提出了一种基于深度学习的 CXR 检测 COVID-19 的模型,以及一种根据该模型在 CXR 上的结果检索相似患者的工具。为了训练和评估我们的模型,我们从四家不同医院住院的患者中收集了 CXR。
在这项回顾性研究中,我们收集了 2020 年 3 月至 8 月间 COVID-19 确诊患者的 1384 张正位 CXR 和 1024 张大流行前非 COVID 患者的匹配 CXR,用于构建用于检测 COVID-19 阳性患者的深度学习分类器。该分类器由一组预训练的深度神经网络(DNN)组成,具体包括 ReNet34、ReNet50、ReNet152 和 vgg16,并通过数据增强和肺部分割进行增强。我们还实现了一种最近邻算法,该算法使用基于 DNN 的图像嵌入来检索与给定图像最相似的图像。
我们的模型在包含原始图像 15%(350/2326)的测试数据集上实现了 90.3%(95%置信区间:86.3-93.7%)的准确率、90%(95%置信区间:84.3-94%)的特异性和 90.5%(95%置信区间:85-94%)的敏感性。ROC 曲线的 AUC 为 0.96(95%置信区间:0.93-0.97)。
我们提供了基于 CXR 训练和评估的深度学习模型,可协助医疗工作并减轻处理 COVID-19 时医务人员的工作量。
• 机器学习模型能够以超过 90%的准确率和检测率检测出 COVID-19 阳性的 CXR 图像。• 根据模型的图像嵌入,创建了一种工具,用于根据模型的图像嵌入找到与给定 CXR 成像特征最相似的现有 CXR 图像。