Suppr超能文献

回归卷积神经网络模型提示外周免疫调节变异与阿尔茨海默病易感性有关。

Regression convolutional neural network models implicate peripheral immune regulatory variants in the predisposition to Alzheimer's disease.

机构信息

Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2024 Aug 26;20(8):e1012356. doi: 10.1371/journal.pcbi.1012356. eCollection 2024 Aug.

Abstract

Alzheimer's disease (AD) involves aggregation of amyloid β and tau, neuron loss, cognitive decline, and neuroinflammatory responses. Both resident microglia and peripheral immune cells have been associated with the immune component of AD. However, the relative contribution of resident and peripheral immune cell types to AD predisposition has not been thoroughly explored due to their similarity in gene expression and function. To study the effects of AD-associated variants on cis-regulatory elements, we train convolutional neural network (CNN) regression models that link genome sequence to cell type-specific levels of open chromatin, a proxy for regulatory element activity. We then use in silico mutagenesis of regulatory sequences to predict the relative impact of candidate variants across these cell types. We develop and apply criteria for evaluating our models and refine our models using massively parallel reporter assay (MPRA) data. Our models identify multiple AD-associated variants with a greater predicted impact in peripheral cells relative to microglia or neurons. Our results support their use as models to study the effects of AD-associated variants and even suggest that peripheral immune cells themselves may mediate a component of AD predisposition. We make our library of CNN models and predictions available as a resource for the community to study immune and neurological disorders.

摘要

阿尔茨海默病(AD)涉及淀粉样β和tau 的聚集、神经元丧失、认知能力下降和神经炎症反应。常驻小胶质细胞和外周免疫细胞都与 AD 的免疫成分有关。然而,由于常驻和外周免疫细胞类型在基因表达和功能上具有相似性,因此尚未彻底探讨它们对 AD 易感性的相对贡献。为了研究与 AD 相关的变异对顺式调控元件的影响,我们训练卷积神经网络(CNN)回归模型,将基因组序列与细胞类型特异性的开放染色质联系起来,开放染色质是调控元件活性的替代物。然后,我们使用调控序列的计算机诱变来预测候选变异在这些细胞类型中的相对影响。我们开发并应用了评估模型的标准,并使用大规模平行报告基因检测(MPRA)数据对模型进行了改进。我们的模型确定了多个与 AD 相关的变异,它们在外周细胞中的预测影响相对于小胶质细胞或神经元更大。我们的结果支持将它们用作研究 AD 相关变异影响的模型,甚至表明外周免疫细胞本身可能介导 AD 易感性的一个组成部分。我们将我们的 CNN 模型库和预测作为社区研究免疫和神经紊乱的资源提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f852/11389932/db7d9c67b334/pcbi.1012356.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验