Suppr超能文献

在药物发现中通过数字孪生和片上系统连接硅世界与碳世界。

Bridging silicon and carbon worlds with digital twins and on-chip systems in drug discovery.

作者信息

Akbarialiabad Hossein, Seyyedi Mahdiyeh Sadat, Paydar Shahram, Habibzadeh Adrina, Haghighi Alireza, Kvedar Joseph C

机构信息

St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia.

Nuvance Global Health Program, CT, USA.

出版信息

NPJ Syst Biol Appl. 2024 Dec 19;10(1):150. doi: 10.1038/s41540-024-00476-9.

Abstract

This perspective discusses the convergence of digital twin (DT) technology and on-the-chip systems as pivotal innovations in precision medicine, substantially advancing drug discovery. DT leverages extensive health data to create dynamic virtual patient models, enabling predictive insights and optimized treatment strategies. Concurrently, on-the-chip systems from the Carbon world replicate human biological processes on microfluidic platforms, providing detailed insights into disease mechanisms and pharmacological interactions. The convergence of these technologies promises to revolutionize drug development by enhancing therapeutic precision, accelerating discovery timelines, and reducing costs. Specifically, it assesses their role in drug development, from refining therapeutic precision to expediting discovery timelines and reducing the final price. Nevertheless, integrating these technologies faces challenges, including data collection and privacy concerns, technical intricacies, and clinical adoption barriers. This manuscript argues for interdisciplinary cooperation to navigate these challenges, positing DTs and on-the-chip technologies as foundational elements in personalized healthcare and drug discovery.

摘要

本文探讨了数字孪生(DT)技术与片上系统的融合,这是精准医学中的关键创新,极大地推动了药物研发。数字孪生利用大量健康数据创建动态虚拟患者模型,从而实现预测性洞察并优化治疗策略。与此同时,来自碳世界的片上系统在微流控平台上复制人类生物过程,深入洞察疾病机制和药理相互作用。这些技术的融合有望通过提高治疗精准度、加速研发进程和降低成本来彻底改变药物开发。具体而言,它评估了这些技术在药物开发中的作用,从提高治疗精准度到加快研发进程以及降低最终价格。然而,整合这些技术面临挑战,包括数据收集和隐私问题、技术复杂性以及临床应用障碍。本文主张通过跨学科合作来应对这些挑战,将数字孪生和片上技术视为个性化医疗保健和药物发现的基础要素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c65/11659457/eb5b1b6bd345/41540_2024_476_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验