Suppr超能文献

基于卷积神经网络的心电图筛选左心室功能障碍的方法。

A method to screen left ventricular dysfunction through ECG based on convolutional neural network.

机构信息

Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.

Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

J Cardiovasc Electrophysiol. 2021 Apr;32(4):1095-1102. doi: 10.1111/jce.14936. Epub 2021 Feb 15.

Abstract

OBJECTIVE

This study aims to develop an artificial intelligence-based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone.

METHODS

Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12-lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG-TTE pairs from a single individual, only the earliest data pair was included. All the ECG-TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.

RESULTS

We retrospectively enrolled a total of 26 786 ECG-TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%.

CONCLUSION

Our results demonstrate that a well-trained CNN algorithm may be used as a low-cost and noninvasive method to identify patients with left ventricular dysfunction.

摘要

目的

本研究旨在开发一种基于人工智能的方法,仅使用心电图(ECG)数据筛选左心室射血分数(LVEF)为 50%或更低的患者。

方法

卷积神经网络(CNN)是一类深度学习网络,已广泛应用于医学图像识别。我们收集了标准的 12 导联心电图(ECG)和经胸超声心动图(TTE)数据,包括 LVEF 值。然后,我们将 ECG 和 TTE 数据来自同一患者进行配对。对于来自单个个体的多个 ECG-TTE 对,仅包括最早的数据对。所有 ECG-TTE 对被随机分为训练、验证或测试数据集,比例为 9:1:1,以创建或评估 CNN 模型。最后,我们通过总准确率、敏感性、特异性、阳性预测值和阴性预测值来评估筛选性能。

结果

我们回顾性地纳入了总共 26786 对 ECG-TTE,并将其随机分为训练集(n=21732)、验证集(n=2530)和测试数据集(n=2530)。在测试集中,CNN 算法的总准确率为 73.9%,敏感性为 69.2%,特异性为 70.5%,阳性预测值为 70.1%,阴性预测值为 69.9%。

结论

我们的研究结果表明,经过良好训练的 CNN 算法可作为一种低成本、非侵入性的方法来识别左心室功能障碍患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验