Suppr超能文献

基于血液转录组的创伤后多器官衰竭/功能障碍综合征生物标志物预测模型的开发

Development of a biomarker prediction model for post-trauma multiple organ failure/dysfunction syndrome based on the blood transcriptome.

作者信息

Duran Ivan, Banerjee Ankita, Flaherty Patrick J, Que Yok-Ai, Ryan Colleen M, Rahme Laurence G, Tsurumi Amy

机构信息

Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.

Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA, 01003, USA.

出版信息

Ann Intensive Care. 2024 Aug 28;14(1):134. doi: 10.1186/s13613-024-01364-5.

Abstract

BACKGROUND

Multiple organ failure/dysfunction syndrome (MOF/MODS) is a major cause of mortality and morbidity among severe trauma patients. Current clinical practices entail monitoring physiological measurements and applying clinical score systems to diagnose its onset. Instead, we aimed to develop an early prediction model for MOF outcome evaluated soon after traumatic injury by performing machine learning analysis of genome-wide transcriptome data from blood samples drawn within 24 h of traumatic injury. We then compared its performance to baseline injury severity scores and detection of infections.

METHODS

Buffy coat transcriptome and linked clinical datasets from blunt trauma patients from the Inflammation and the Host Response to Injury Study ("Glue Grant") multi-center cohort were used. According to the inclusion/exclusion criteria, 141 adult (age ≥ 16 years old) blunt trauma patients (excluding penetrating) with early buffy coat (≤ 24 h since trauma injury) samples were analyzed, with 58 MOF-cases and 83 non-cases. We applied the Least Absolute Shrinkage and Selection Operator (LASSO) and eXtreme Gradient Boosting (XGBoost) algorithms to select features and develop models for MOF early outcome prediction.

RESULTS

The LASSO model included 18 transcripts (AUROC [95% CI]: 0.938 [0.890-0.987] (training) and 0.833 [0.699-0.967] (test)), and the XGBoost model included 41 transcripts (0.999 [0.997-1.000] (training) and 0.907 [0.816-0.998] (test)). There were 16 overlapping transcripts comparing the two panels (0.935 [0.884-0.985] (training) and 0.836 [0.703-0.968] (test)). The biomarker models notably outperformed models based on injury severity scores and sex, which we found to be significantly associated with MOF (APACHEII + sex-0.649 [0.537-0.762] (training) and 0.493 [0.301-0.685] (test); ISS + sex-0.630 [0.516-0.744] (training) and 0.482 [0.293-0.670] (test); NISS + sex-0.651 [0.540-0.763] (training) and 0.525 [0.335-0.714] (test)).

CONCLUSIONS

The accurate assessment of MOF from blood samples immediately after trauma is expected to aid in improving clinical decision-making and may contribute to reduced morbidity, mortality and healthcare costs. Moreover, understanding the molecular mechanisms involving the transcripts identified as important for MOF prediction may eventually aid in developing novel interventions.

摘要

背景

多器官功能衰竭/功能障碍综合征(MOF/MODS)是严重创伤患者死亡和发病的主要原因。当前的临床实践包括监测生理指标并应用临床评分系统来诊断其发病情况。相反,我们旨在通过对创伤后24小时内采集的血液样本进行全基因组转录组数据的机器学习分析,开发一种用于创伤后不久评估MOF结局的早期预测模型。然后,我们将其性能与基线损伤严重程度评分和感染检测进行比较。

方法

使用来自炎症与宿主对损伤的反应研究(“胶水基金”)多中心队列中钝性创伤患者的血沉棕黄层转录组和相关临床数据集。根据纳入/排除标准,分析了141例成年(年龄≥16岁)钝性创伤患者(不包括穿透伤),这些患者有早期血沉棕黄层(创伤后≤24小时)样本,其中58例为MOF病例,83例为非病例。我们应用最小绝对收缩和选择算子(LASSO)和极端梯度提升(XGBoost)算法来选择特征并开发MOF早期结局预测模型。

结果

LASSO模型包括18个转录本(曲线下面积[AUC][95%置信区间]:0.938[0.890 - 0.987](训练)和0.833[0.699 - 0.967](测试)),XGBoost模型包括41个转录本(0.999[0.997 - 1.000](训练)和0.907[0.816 - 0.998](测试))。比较两个模型组有16个重叠转录本(0.935[0.884 - 0.985](训练)和0.836[0.703 - 0.968](测试))。生物标志物模型明显优于基于损伤严重程度评分和性别的模型,我们发现这些模型与MOF显著相关(急性生理与慢性健康状况评分系统II[APACHEII]+性别 - 0.649[0.537 - 0.762](训练)和0.493[0.301 - 0.685](测试);简明损伤定级[ISS]+性别 - 0.630[0.516 - 0.744](训练)和0.482[0.293 - 0.670](测试);新损伤严重程度评分[NISS]+性别 - 0.651[0.540 - 0.763](训练)和0.525[0.335 - 0.714](测试))。

结论

创伤后立即从血液样本中准确评估MOF有望有助于改善临床决策,并可能有助于降低发病率、死亡率和医疗成本。此外,了解涉及被确定为对MOF预测重要的转录本的分子机制最终可能有助于开发新的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dee5/11358370/d360991c7c45/13613_2024_1364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验