Suppr超能文献

利用人工智能眼动追踪技术预测在线杂志和PDF杂志中的行为模式。

Predicting Behaviour Patterns in Online and PDF Magazines with AI Eye-Tracking.

作者信息

Šola Hedda Martina, Qureshi Fayyaz Hussain, Khawaja Sarwar

机构信息

Oxford Centre For Applied Research and Entrepreneurship (OxCARE), Oxford Business College, 65 George Street, Oxford OX1 2BQ, UK.

Institute for Neuromarketing & Intellectual Property, Jurja Ves III spur no 4, 10000 Zagreb, Croatia.

出版信息

Behav Sci (Basel). 2024 Aug 5;14(8):677. doi: 10.3390/bs14080677.

Abstract

This study aims to improve college magazines, making them more engaging and user-friendly. We combined eye-tracking technology with artificial intelligence to accurately predict consumer behaviours and preferences. Our analysis included three college magazines, both online and in PDF format. We evaluated user experience using neuromarketing eye-tracking AI prediction software, trained on a large consumer neuroscience dataset of eye-tracking recordings from 180,000 participants, using Tobii X2 30 equipment, encompassing over 100 billion data points and 15 consumer contexts. An analysis was conducted with R programming v. 2023.06.0+421 and advanced SPSS statistics v. 27, IBM. (ANOVA, Welch's Two-Sample -test, and Pearson's correlation). Our research demonstrated the potential of modern eye-tracking AI technologies in providing insights into various types of attention, including focus, engagement, cognitive demand, and clarity. The scientific accuracy of our findings, at 97-99%, underscores the reliability and robustness of our research, instilling confidence in the audience. This study also emphasizes the potential for future research to explore automated datasets, enhancing reliability and applicability across various fields and inspiring hope for further advancements in the field.

摘要

本研究旨在改进大学杂志,使其更具吸引力且用户体验更佳。我们将眼动追踪技术与人工智能相结合,以准确预测消费者行为和偏好。我们的分析涵盖了三本大学杂志,包括在线版和PDF版。我们使用神经营销眼动追踪人工智能预测软件评估用户体验,该软件基于一个大型消费者神经科学数据集进行训练,该数据集包含来自18万名参与者的眼动记录,使用的是托比X2 30设备,涵盖超过1000亿个数据点和15种消费者情境。使用R编程v. 2023.06.0+421和高级SPSS统计软件v. 27(IBM公司)进行分析(方差分析、韦尔奇两样本检验和皮尔逊相关性分析)。我们的研究证明了现代眼动追踪人工智能技术在洞察各种注意力类型方面的潜力,包括注意力集中程度、参与度、认知需求和清晰度。我们研究结果的科学准确性达到97%至99%,凸显了我们研究的可靠性和稳健性,增强了受众的信心。本研究还强调了未来研究探索自动化数据集的潜力,这将提高各领域的可靠性和适用性,并为该领域的进一步发展带来希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a8/11351346/22b67562bbab/behavsci-14-00677-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验