Suppr超能文献

基于脑电图的癫痫发作预测:使用具有注意力融合的混合密集连接网络-视觉Transformer网络

EEG-Based Seizure Prediction Using Hybrid DenseNet-ViT Network with Attention Fusion.

作者信息

Yuan Shasha, Yan Kuiting, Wang Shihan, Liu Jin-Xing, Wang Juan

机构信息

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266114, China.

出版信息

Brain Sci. 2024 Aug 21;14(8):839. doi: 10.3390/brainsci14080839.

Abstract

Epilepsy seizure prediction is vital for enhancing the quality of life for individuals with epilepsy. In this study, we introduce a novel hybrid deep learning architecture, merging DenseNet and Vision Transformer (ViT) with an attention fusion layer for seizure prediction. DenseNet captures hierarchical features and ensures efficient parameter usage, while ViT offers self-attention mechanisms and global feature representation. The attention fusion layer effectively amalgamates features from both networks, guaranteeing the most relevant information is harnessed for seizure prediction. The raw EEG signals were preprocessed using the short-time Fourier transform (STFT) to implement time-frequency analysis and convert EEG signals into time-frequency matrices. Then, they were fed into the proposed hybrid DenseNet-ViT network model to achieve end-to-end seizure prediction. The CHB-MIT dataset, including data from 24 patients, was used for evaluation and the leave-one-out cross-validation method was utilized to evaluate the performance of the proposed model. Our results demonstrate superior performance in seizure prediction, exhibiting high accuracy and low redundancy, which suggests that combining DenseNet, ViT, and the attention mechanism can significantly enhance prediction capabilities and facilitate more precise therapeutic interventions.

摘要

癫痫发作预测对于提高癫痫患者的生活质量至关重要。在本研究中,我们引入了一种新颖的混合深度学习架构,将密集连接网络(DenseNet)和视觉Transformer(ViT)与一个注意力融合层相结合用于癫痫发作预测。DenseNet捕获分层特征并确保有效使用参数,而ViT提供自注意力机制和全局特征表示。注意力融合层有效地融合了来自两个网络的特征,确保利用最相关的信息进行癫痫发作预测。原始脑电图(EEG)信号使用短时傅里叶变换(STFT)进行预处理,以实现时频分析并将EEG信号转换为时频矩阵。然后,将它们输入到所提出的混合DenseNet-ViT网络模型中以实现端到端的癫痫发作预测。使用包含24名患者数据的CHB-MIT数据集进行评估,并采用留一法交叉验证方法来评估所提出模型的性能。我们的结果表明该模型在癫痫发作预测方面具有卓越性能,展现出高准确性和低冗余性,这表明结合DenseNet、ViT和注意力机制可以显著提高预测能力并促进更精确的治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a6/11352294/4aede79b431d/brainsci-14-00839-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验