Suppr超能文献

采用TeloView技术进行的分析预测霍奇金淋巴瘤对一线ABVD疗法的反应。

Analysis by TeloView Technology Predicts the Response of Hodgkin's Lymphoma to First-Line ABVD Therapy.

作者信息

Knecht Hans, Johnson Nathalie, Bienz Marc N, Brousset Pierre, Memeo Lorenzo, Shifrin Yulia, Alikhah Asieh, Louis Sherif F, Mai Sabine

机构信息

Division of Hematology, Jewish General Hospital, McGill University, Montréal, QC H3A 0G4, Canada.

Toulouse Cancer Center, Université de Toulouse, 31000 Toulouse, France.

出版信息

Cancers (Basel). 2024 Aug 10;16(16):2816. doi: 10.3390/cancers16162816.

Abstract

Classic Hodgkin's lymphoma (cHL) is a curable cancer with a disease-free survival rate of over 10 years. Over 80% of diagnosed patients respond favorably to first-line chemotherapy, but few biomarkers exist that can predict the 15-20% of patients who experience refractory or early relapsed disease. To date, the identification of patients who will not respond to first-line therapy based on disease staging and traditional clinical risk factor analysis is still not possible. Three-dimensional (3D) telomere analysis using the TeloView software platform has been shown to be a reliable tool to quantify genomic instability and to inform on disease progression and patients' response to therapy in several cancers. It also demonstrated telomere dysfunction in cHL elucidating biological mechanisms related to disease progression. Here, we report 3D telomere analysis on a multicenter cohort of 156 cHL patients. We used the cohort data as a training data set and identified significant 3D telomere parameters suitable to predict individual patient outcomes at the point of diagnosis. Multivariate analysis using logistic regression procedures allowed for developing a predictive scoring model using four 3D telomere parameters as predictors, including the proportion of t-stumps (very short telomeres), which has been a prominent predictor for cHL patient outcome in a previously published study using TeloView analysis. The percentage of t-stumps was by far the most prominent predictor to identify refractory/relapsing (RR) cHL prior to initiation of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) therapy. The model characteristics include an AUC of 0.83 in ROC analysis and a sensitivity and specificity of 0.82 and 0.78 respectively.

摘要

经典型霍奇金淋巴瘤(cHL)是一种可治愈的癌症,无病生存率超过10年。超过80%的确诊患者对一线化疗反应良好,但几乎没有生物标志物能够预测那15% - 20%出现难治性或早期复发疾病的患者。迄今为止,基于疾病分期和传统临床风险因素分析来识别对一线治疗无反应的患者仍然是不可能的。使用TeloView软件平台进行的三维(3D)端粒分析已被证明是一种可靠的工具,可用于量化基因组不稳定性,并为几种癌症的疾病进展和患者对治疗的反应提供信息。它还揭示了cHL中端粒功能障碍,阐明了与疾病进展相关的生物学机制。在此,我们报告了对156例cHL患者的多中心队列进行的3D端粒分析。我们将队列数据用作训练数据集,并确定了适合在诊断时预测个体患者预后的重要3D端粒参数。使用逻辑回归程序进行多变量分析,从而开发出一个预测评分模型,该模型使用四个3D端粒参数作为预测因子,其中包括t形残端(非常短的端粒)的比例,在先前一项使用TeloView分析的研究中,这一比例一直是cHL患者预后的一个重要预测因子。t形残端的比例是在开始使用阿霉素、博来霉素、长春花碱和达卡巴嗪(ABVD)治疗之前识别难治性/复发性(RR)cHL的最显著预测因子。该模型的特征包括在ROC分析中AUC为0.83,敏感性和特异性分别为0.82和0.78。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e0/11352807/9cfa70447d6d/cancers-16-02816-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验