Suppr超能文献

基于弹性变形的机器学习提高非小细胞肺癌亚型分类。

Improving the Subtype Classification of Non-small Cell Lung Cancer by Elastic Deformation Based Machine Learning.

机构信息

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.

Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.

出版信息

J Digit Imaging. 2021 Jun;34(3):605-617. doi: 10.1007/s10278-021-00455-0. Epub 2021 May 7.

Abstract

Non-invasive image-based machine learning models have been used to classify subtypes of non-small cell lung cancer (NSCLC). However, the classification performance is limited by the dataset size, because insufficient data cannot fully represent the characteristics of the tumor lesions. In this work, a data augmentation method named elastic deformation is proposed to artificially enlarge the image dataset of NSCLC patients with two subtypes (squamous cell carcinoma and large cell carcinoma) of 3158 images. Elastic deformation effectively expanded the dataset by generating new images, in which tumor lesions go through elastic shape transformation. To evaluate the proposed method, two classification models were trained on the original and augmented dataset, respectively. Using augmented dataset for training significantly increased classification metrics including area under the curve (AUC) values of receiver operating characteristics (ROC) curves, accuracy, sensitivity, specificity, and f-score, thus improved the NSCLC subtype classification performance. These results suggest that elastic deformation could be an effective data augmentation method for NSCLC tumor lesion images, and building classification models with the help of elastic deformation has the potential to serve for clinical lung cancer diagnosis and treatment design.

摘要

基于影像的无创机器学习模型已被用于对非小细胞肺癌(NSCLC)的亚型进行分类。然而,由于数据集的大小限制,分类性能受到限制,因为不足的数据无法充分代表肿瘤病变的特征。在这项工作中,提出了一种名为弹性变形的数据增强方法,用于人为地扩大具有两种亚型(鳞状细胞癌和大细胞癌)的 3158 张图像的 NSCLC 患者的影像数据集。弹性变形通过生成新的图像来有效地扩展数据集,其中肿瘤病变经历弹性形状变换。为了评估所提出的方法,分别在原始数据集和增强数据集上训练了两个分类模型。使用增强数据集进行训练显著提高了分类指标,包括接收者操作特征(ROC)曲线的曲线下面积(AUC)值、准确性、敏感度、特异性和 F 分数,从而提高了 NSCLC 亚型分类性能。这些结果表明,弹性变形可能是一种有效的 NSCLC 肿瘤病变图像的数据增强方法,并且借助弹性变形构建分类模型有可能用于临床肺癌诊断和治疗设计。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验