Suppr超能文献

基于放射组学和深度学习模型的 CT 图像肺癌组织学分类。

Lung cancer histology classification from CT images based on radiomics and deep learning models.

机构信息

Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75 str., 11527, Athens, Greece.

2nd Department of Radiology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

出版信息

Med Biol Eng Comput. 2021 Jan;59(1):215-226. doi: 10.1007/s11517-020-02302-w. Epub 2021 Jan 7.

Abstract

Adenocarcinoma (AC) and squamous cell carcinoma (SCC) are frequent reported cases of non-small cell lung cancer (NSCLC), responsible for a large fraction of cancer deaths worldwide. In this study, we aim to investigate the potential of NSCLC histology classification into AC and SCC by applying different feature extraction and classification techniques on pre-treatment CT images. The employed image dataset (102 patients) was taken from the publicly available cancer imaging archive collection (TCIA). We investigated four different families of techniques: (a) radiomics with two classifiers (kNN and SVM), (b) four state-of-the-art convolutional neural networks (CNNs) with transfer learning and fine tuning (Alexnet, ResNet101, Inceptionv3 and InceptionResnetv2), (c) a CNN combined with a long short-term memory (LSTM) network to fuse information about the spatial coherency of tumor's CT slices, and (d) combinatorial models (LSTM + CNN + radiomics). In addition, the CT images were independently evaluated by two expert radiologists. Our results showed that the best CNN was Inception (accuracy = 0.67, auc = 0.74). LSTM + Inception yielded superior performance than all other methods (accuracy = 0.74, auc = 0.78). Moreover, LSTM + Inception outperformed experts by 7-25% (p < 0.05). The proposed methodology does not require detailed segmentation of the tumor region and it may be used in conjunction with radiological findings to improve clinical decision-making. Lung cancer histology classification from CT images based on CNN + LSTM.

摘要

腺癌 (AC) 和鳞状细胞癌 (SCC) 是常见的非小细胞肺癌 (NSCLC) 报告病例,占全球癌症死亡人数的很大一部分。在这项研究中,我们旨在通过在预处理 CT 图像上应用不同的特征提取和分类技术,将 NSCLC 组织学分类为 AC 和 SCC。所使用的图像数据集(102 名患者)取自公共可用的癌症成像档案集合 (TCIA)。我们研究了四种不同的技术系列:(a) 放射组学结合两种分类器(kNN 和 SVM),(b) 四种最先进的带有迁移学习和微调的卷积神经网络 (CNN)(Alexnet、ResNet101、Inceptionv3 和 InceptionResnetv2),(c) 将信息融合到肿瘤 CT 切片的空间一致性的 CNN 与长短期记忆 (LSTM) 网络结合,以及 (d) 组合模型 (LSTM + CNN + 放射组学)。此外,由两位专家放射科医生对 CT 图像进行独立评估。我们的结果表明,最佳的 CNN 是 Inception(准确率 = 0.67,auc = 0.74)。LSTM + Inception 的性能优于所有其他方法(准确率 = 0.74,auc = 0.78)。此外,LSTM + Inception 比专家高出 7-25%(p < 0.05)。该方法不需要对肿瘤区域进行详细分割,可与放射学发现结合使用,以改善临床决策。基于 CNN + LSTM 的 CT 图像肺癌组织学分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验